• Advanced Photonics
  • Vol. 5, Issue 4, 046009 (2023)
Yuhang Li1、2、3, Tianyi Gan1、3, Bijie Bai1、2、3, Çağatay Işıl1、2、3, Mona Jarrahi1、3, and Aydogan Ozcan1、2、3、*
Author Affiliations
  • 1University of California, Department of Electrical and Computer Engineering, Los Angeles, California, United States
  • 2University of California, Department of Bioengineering, Los Angeles, California, United States
  • 3University of California, California NanoSystems Institute, Los Angeles, California, United States
  • show less
    DOI: 10.1117/1.AP.5.4.046009 Cite this Article Set citation alerts
    Yuhang Li, Tianyi Gan, Bijie Bai, Çağatay Işıl, Mona Jarrahi, Aydogan Ozcan. Optical information transfer through random unknown diffusers using electronic encoding and diffractive decoding[J]. Advanced Photonics, 2023, 5(4): 046009 Copy Citation Text show less
    References

    [1] M. A. Esmail et al. Investigation and demonstration of high speed full-optical hybrid FSO/fiber communication system under light sand storm condition. IEEE Photonics J., 9, 7900612(2017).

    [2] C. Liu et al. Free-space communication based on quantum cascade laser. J. Semicond., 36, 094009(2015).

    [3] Y. Xiao et al. Physically-secured high-fidelity free-space optical data transmission through scattering media using dynamic scaling factors. Opt. Express, 30, 8186-8198(2022).

    [4] X. Zhu, J. M. Kahn. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun., 50, 1293-1300(2002).

    [5] Z. Pan et al. Accurate optical information transmission through thick tissues using zero-frequency modulation and single-pixel detection. Opt. Lasers Eng., 158, 107133(2022).

    [6] N. Saeed et al. Underwater optical wireless communications, networking, and localization: a survey. Ad Hoc Networks, 94, 101935(2019).

    [7] Z. Pan et al. Optical transmission through thick biological tissue using optical modulation. Proc. SPIE, 12550, 125500E(2023).

    [8] C. Paterson. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett., 94, 153901(2005).

    [9] D. S. Wiersma. Disordered photonics. Nat. Photonics, 7, 188-196(2013).

    [10] S. M. Popoff et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [11] J. Bertolotti et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [12] J. Lim et al. High-fidelity optical diffraction tomography of multiple scattering samples. Light Sci. Appl., 8, 82(2019).

    [13] Y. Xiao, L. Zhou, W. Chen. Wavefront control through multi-layer scattering media using single-pixel detector for high-PSNR optical transmission. Opt. Lasers Eng., 139, 106453(2021).

    [14] S. Popoff et al. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [15] M. M. P. Fard et al. Experimental realization of arbitrary activation functions for optical neural networks. Opt. Express, 28, 12138-12148(2020).

    [16] R. Dutta et al. Single-pixel imaging of the retina through scattering media. Biomed. Opt. Express, 10, 4159-4167(2019).

    [17] Y. Zhao et al. Feedback-enabled adaptive underwater twisted light transmission link utilizing the reflection at the air-water interface. Opt. Express, 26, 16102-16112(2018).

    [18] S. Li, J. Wang. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics. Opt. Lett., 41, 1482-1485(2016).

    [19] A. Wang et al. Adaptive water-air-water data information transfer using orbital angular momentum. Opt. Express, 26, 8669-8678(2018).

    [20] J. Bacca, Y. Fonseca, H. Arguello. Compressive spectral image reconstruction using deep prior and low-rank tensor representation. Appl. Opt., 60, 4197-4207(2021).

    [21] S. Li et al. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [22] T. Wu et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity. Opt. Express, 25, 27182-27194(2017).

    [23] F. Li et al. Compressive ghost imaging through scattering media with deep learning. Opt. Express, 28, 17395-17408(2020).

    [24] M. Lyu et al. Deep-learning-based ghost imaging. Sci. Rep., 7, 17865(2017).

    [25] Y. Rivenson et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [26] S. Jiang et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomed. Opt. Express, 9, 3306-3319(2018).

    [27] D. Shen, G. Wu, H.-I. Suk. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng., 19, 221-248(2017).

    [28] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    [29] Y. Li et al. Analysis of diffractive neural networks for seeing through random diffusers. IEEE J. Sel. Top. Quantum Electron., 29, 7600117(2022).

    [30] Y. Luo et al. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight, 2, 4(2022).

    [31] M. S. S. Rahman et al. Universal linear intensity transformations using spatially-incoherent diffractive processors(2023).

    [32] D. Mengu, A. Ozcan. All-optical phase recovery: diffractive computing for quantitative phase imaging. Adv. Opt. Mater., 10, 2200281(2022).

    [33] O. Kulce et al. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci. Appl., 10, 196(2021).

    [34] O. Kulce et al. All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl., 10, 25(2021).

    [35] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [36] C. Isıl et al. Super-resolution image display using diffractive decoders. Sci. Adv., 8, eadd3433(2022).

    [37] J. Li et al. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv., 7, eabd7690(2021).

    [38] D. Mengu et al. Misalignment resilient diffractive optical networks. Nanophotonics, 9, 4207-4219(2020).

    [39] N. Ji, D. E. Milkie, E. Betzig. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods, 7, 141-147(2010).

    [40] X. Xu et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference. Opt. Express, 26, 15073-15083(2018).

    [41] G. Satat et al. All photons imaging through volumetric scattering. Sci. Rep., 6, 33946(2016).

    [42] O. Katz et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [43] A. Banerjee et al. Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited]. J. Opt. Networks, 4, 737-758(2005).

    [44] S. Ioffe, C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift, 448-456(2015).

    [45] K. He et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification, 1026-1034(2015).

    [46] J. W. Goodman. Introduction to Fourier Optics(2005).

    [47] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2015).

    Yuhang Li, Tianyi Gan, Bijie Bai, Çağatay Işıl, Mona Jarrahi, Aydogan Ozcan. Optical information transfer through random unknown diffusers using electronic encoding and diffractive decoding[J]. Advanced Photonics, 2023, 5(4): 046009
    Download Citation