• Advanced Photonics
  • Vol. 4, Issue 2, 026001 (2022)
Chao He1、†,*, Jintao Chang2、3, Patrick S. Salter1, Yuanxing Shen3, Ben Dai4, Pengcheng Li3, Yihan Jin1, Samlan Chandran Thodika5, Mengmeng Li1, Aziz Tariq6, Jingyu Wang1, Jacopo Antonello1, Yang Dong3, Ji Qi7, Jianyu Lin8, Daniel S. Elson8, Min Zhang9, Honghui He3、*, Hui Ma2、3、*, and Martin J. Booth1、*
Author Affiliations
  • 1University of Oxford, Department of Engineering Science, Oxford, United Kingdom
  • 2Tsinghua University, Department of Physics, Beijing, China
  • 3Tsinghua University, Tsinghua Shenzhen International Graduate School, Guangdong Engineering Center of Polarization Imaging and Sensing Technology, Shenzhen, China
  • 4The Chinese University of Hong Kong, Department of Statistics, Hong Kong, China
  • 5University Bordeaux, CNRS, LOMA, UMR 5798, Talence, France
  • 6Mirpur University of Science and Technology, Department of Physics, Mirpur, Pakistan
  • 7Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, China
  • 8Imperial College London, Hamlyn Centre for Robotic Surgery, London, United Kingdom
  • 9Shenzhen Second People’s Hospital, Respiratory Department, Shenzhen, China
  • show less
    DOI: 10.1117/1.AP.4.2.026001 Cite this Article Set citation alerts
    Chao He, Jintao Chang, Patrick S. Salter, Yuanxing Shen, Ben Dai, Pengcheng Li, Yihan Jin, Samlan Chandran Thodika, Mengmeng Li, Aziz Tariq, Jingyu Wang, Jacopo Antonello, Yang Dong, Ji Qi, Jianyu Lin, Daniel S. Elson, Min Zhang, Honghui He, Hui Ma, Martin J. Booth. Revealing complex optical phenomena through vectorial metrics[J]. Advanced Photonics, 2022, 4(2): 026001 Copy Citation Text show less
    References

    [1] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [2] K. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [3] A. Forbes, M. De Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [4] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [5] K. Dholakia, B. W. Drinkwater, M. Ritsch-Marte. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys., 2, 480-491(2020).

    [6] A. Dorrah et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287-296(2021).

    [7] N. Hafi et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nat. Methods, 11, 579-584(2014).

    [8] D. Jin et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods, 15, 415-423(2018).

    [9] C. He et al. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl., 10, 194(2021).

    [10] N. A. Rubin, Z. Shi, F. Capasso. Polarization in diffractive optics and metasurfaces. Adv. Opt. Photonics, 13, 836-970(2021).

    [11] D. H. Goldstein. Polarized Light(2017).

    [12] R. A. Chipman, W.-S. T. Lam, G. Young. Polarized Light and Optical Systems(2018).

    [13] J. J. G. Pérez, R. Ossikovski. Polarized Light and the Mueller Matrix Approach(2017).

    [14] N. Zeng, V. V. Tuchin, D. Zhu, E. A. Genina et al. Tissue optical clearing for Mueller matrix microscopy. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging, 31(2022).

    [15] P. Li et al. Separating azimuthal orientation dependence in polarization measurements of anisotropic media. Opt. Express, 26, 3791-3800(2018).

    [16] P. Li et al. Characteristic Mueller matrices for direct assessment of the breaking of symmetries. Opt. Lett., 45, 706-709(2020).

    [17] P. Li et al. Polaromics: deriving polarization parameters from a Mueller matrix for quantitative characterization of biomedical specimen. J. Phys. D Appl. Phys., 55, 034002(2021).

    [18] X. Ling et al. Recent advances in the spin Hall effect of light. Rep. Prog. Phys., 80, 066401(2017).

    [19] J. Zhou et al. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci., 116, 11137-11140(2019).

    [20] C. Prajapati, S. Pidishety, N. K. Viswanathan. Polarimetric measurement method to calculate optical beam shifts. Opt. Lett., 39, 4388-4391(2014).

    [21] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [22] K. Bliokh et al. Spin-Hall effect and circular birefringence of a uniaxial crystal plate. Optica, 3, 1039-1047(2016).

    [23] C. T. Samlan, N. K. Viswanathan. Field-controllable spin-Hall effect of light in optical crystals: a conoscopic Mueller matrix analysis. Sci. Rep., 8, 2002(2018).

    [24] C. He et al. Complex vectorial optics through gradient index lens cascades. Nat. Commun., 10, 4264(2019).

    [25] D. M. Huland et al. In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems. Biomed. Opt. Express, 3, 1077-1085(2012).

    [26] A. K. Ghatak. Optics(2005).

    [27] J. Zhou et al. Broadband photonic spin Hall meta-lens. ACS Nano, 12, 82-88(2018).

    [28] P. S. Salter, M. J. Booth. Adaptive optics in laser processing. Light Sci. Appl., 8, 110(2019).

    [29] G. Della Valle, R. Osellame, P. Laporta. Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A, 11, 013001(2009).

    [30] A. Crespi et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics, 7, 545-549(2013).

    [31] G. D. Marshall et al. Laser written waveguide photonic quantum circuits. Opt. Express, 17, 12546-12554(2009).

    [32] M. Tillmann et al. Experimental boson sampling. Nat. Photonics, 7, 540-544(2013).

    [33] J. Guan et al. Hybrid laser written waveguides in fused silica for low loss and polarization independence. Opt. Express, 25, 4845-4859(2017).

    [34] R. Chipman. Depolarization index and the average degree of polarization. Appl. Opt., 44, 2490-2495(2005).

    [35] S. M. Eaton et al. Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths. J. Lightwave Technol., 27, 1079-1085(2009).

    [36] Y. Shimotsuma et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett., 91, 247405(2003).

    [37] K. Hirao, K. Miura. Writing waveguides and gratings in silica and related materials by a femtosecond laser. J. Non Crys. Solids, 239, 91-95(1998).

    [38] L. Wang, S. L. Jacques, L. Zheng. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed., 47, 131-146(1995).

    [39] T. Yun et al. Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt. Express, 17, 16590-16602(2009).

    [40] H. He et al. Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol., 37, 2534-2548(2019).

    [41] C. Hnatovsky et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl. Phys. Lett., 87, 014104(2005).

    [42] P. G. Kazansky et al. ‘Quill’ writing with ultrashort light pulses in transparent materials. Appl. Phys. Lett., 90, 151120(2007).

    [43] R. S. Herbst, D. Morgensztern, C. Boshoff. The biology and management of non-small cell lung cancer. Nature, 553, 446-454(2018).

    [44] M. Reck et al. Management of non-small-cell lung cancer: recent developments. Lancet, 382, 709-719(2013).

    [45] N. Ghosh, A. I. Vitkin. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt., 16, 110801(2011).

    [46] V. Tuchin. Polarized light interaction with tissues. J. Biomed. Opt., 21, 071114(2016).

    [47] J. Ramella-Roman, I. Saytashev, M. Piccini. A review of polarization-based imaging technologies for clinical and pre-clinical applications. J. Opt., 22, 123001(2020).

    [48] S. C. Litin, S. Nanda. Mayo Clinic Family Health Book(2009).

    [49] Y. Dong et al. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express, 8, 3643-3655(2017).

    [50] T. E. King, A. Pardo, M. Selman. Idiopathic pulmonary fibrosis. Lancet, 378, 1949-1961(2011).

    [51] M. J. Booth. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl., 3, e165(2014).

    [52] Q. Hu et al. Arbitrary vectorial state conversion using liquid crystal spatial light modulators. Opt. Commun., 459, 125028(2020).

    Chao He, Jintao Chang, Patrick S. Salter, Yuanxing Shen, Ben Dai, Pengcheng Li, Yihan Jin, Samlan Chandran Thodika, Mengmeng Li, Aziz Tariq, Jingyu Wang, Jacopo Antonello, Yang Dong, Ji Qi, Jianyu Lin, Daniel S. Elson, Min Zhang, Honghui He, Hui Ma, Martin J. Booth. Revealing complex optical phenomena through vectorial metrics[J]. Advanced Photonics, 2022, 4(2): 026001
    Download Citation