• Photonics Research
  • Vol. 8, Issue 12, 1888 (2020)
Wei Luo1、2、†, Ying Xue1、†, Jie Huang1, Liying Lin1, Bei Shi1, and Kei May Lau1、*
Author Affiliations
  • 1Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 2e-mail: wluoag@connect.ust.hk
  • show less
    DOI: 10.1364/PRJ.403938 Cite this Article Set citation alerts
    Wei Luo, Ying Xue, Jie Huang, Liying Lin, Bei Shi, Kei May Lau. Comparison of growth structures for continuous-wave electrically pumped 1.55 μm quantum dash lasers grown on (001) Si[J]. Photonics Research, 2020, 8(12): 1888 Copy Citation Text show less
    References

    [1] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [2] M. Hochberg, T. Baehr-Jones. Towards fabless silicon photonics. Nat. Photonics, 4, 492-494(2010).

    [3] M. Asghari, A. V. Krishnamoorthy. Energy-efficient communication. Nat. Photonics, 5, 268-270(2011).

    [4] D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, R. G. Beausoleil. Integrated finely tunable microring laser on silicon. Nat. Photonics, 10, 719-722(2016).

    [5] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, M. Nedeljkovic. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [6] T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, G. Eisenstein. Large linewidth reduction in semiconductor lasers based on atom-like gain material. Optica, 6, 1071-1077(2019).

    [7] Y. Jiao, B. W. Tilma, J. Kotani, R. Nötzel, M. K. Smit, S. He, E. A. J. M. Bente. “InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7  μm. Opt. Express, 20, 3675-3692(2012).

    [8] C. Yu, J. Qiu, H. Xia, X. Dou, J. Zhang, J.-W. Pan. Compact and lightweight 1.5  μm lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector. Rev. Sci. Instrum., 89, 103106(2018).

    [9] N. Fujioka, T. Chu, M. Ishizaka. Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators. J. Lightwave Technol., 28, 3115-3120(2010).

    [10] J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, B. Corbett. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photonics, 6, 610-614(2012).

    [11] M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron., 19, 6100117(2013).

    [12] D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, J. E. Bowers. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 6, 745-752(2019).

    [13] Y. Zhang, Q. Du, C. Wang, T. Fakhrul, S. Liu, L. Deng, D. Huang, P. Pintus, J. Bowers, C. A. Ross, J. Hu, L. Bi. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica, 6, 473-478(2019).

    [14] D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, J. E. Bowers. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J. Appl. Phys., 122, 225703(2017).

    [15] B. Shi, Q. Li, K. M. Lau. Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si. J. Cryst. Growth, 464, 28-32(2017).

    [16] B. Shi, H. Zhao, L. Wang, B. Song, S. T. Suran Brunelli, J. Klamkin. Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon. Optica, 6, 1507-1514(2019).

    [17] Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J.-S. Park, M. Liao, S. Pan, A. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. Seeds, R. Penty, I. White, H. Liu. Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon. J. Lightwave Technol., 38, 240-248(2020).

    [18] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [19] T. Sadeev, D. Arsenijević, D. Bimberg. Comparison of dynamic properties of InP/InAs quantum-dot and quantum-dash lasers. Appl. Phys. Lett., 109, 161104(2016).

    [20] R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane. InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications. IEEE J. Sel. Top. Quantum Electron., 17, 1292-1301(2011).

    [21] D. Gready, G. Eisenstein, V. Ivanov, C. Gilfert, F. Schnabel, A. Rippien, J. P. Reithmaier, C. Bornholdt. High speed 1.55  μm InAs/InGaAlAs/InP quantum dot lasers. IEEE Photon. Technol. Lett., 26, 11-13(2014).

    [22] J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, F. Grillot. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl. Phys. Lett., 112, 121102(2018).

    [23] G. Liu, Z. Lu, J. Liu, Y. Mao, M. Vachon, C. Song, P. Barrios, P. J. Poole. Passively mode-locked quantum dash laser with an aggregate 5376 Tbit/s PAM-4 transmission capacity. Opt. Express, 28, 4587-4593(2020).

    [24] E. Alkhazraji, M. S. Alias, K. K. Qureshi, M. Z. M. Khan. Monolithic tunable InAs/InP broadband quantum-dash laser. IEEE Access, 8, 39046-39055(2020).

    [25] A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentovich, G. Eisenstein, J. P. Reithmaier. Temperature stability of static and dynamic properties of 1.55  μm quantum dot lasers. Opt. Express, 26, 6056-6066(2018).

    [26] B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, K. M. Lau. Continuous-wave optically pumped 1.55  μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photon., 4, 204-210(2017).

    [27] S. Zhu, B. Shi, K. M. Lau. Electrically pumped 1.5  μm InP-based quantum dot microring lasers directly grown on (001) Si. Opt. Lett., 44, 4566-4569(2019).

    [28] Y. Xue, W. Luo, S. Zhu, L. Lin, B. Shi, K. M. Lau. 1.55  μm electrically pumped continuous wave lasing of quantum dash lasers grown on silicon. Opt. Express, 28, 18172-18179(2020).

    [29] D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, J. E. Bowers. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett., 112, 153507(2018).

    [30] R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, T. Baron. Epitaxial growth of antiphase boundary free GaAs layer on 300  nm Si(001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater., 4, 046101(2016).

    [31] H. Horikawa, Y. Kawai, M. Akiyama, M. Sakuta. Hetero-epitaxial growth of InP on Si substrates by LP-MOVPE. J. Cryst. Growth, 93, 523-526(1988).

    [32] M. K. Lee, D. S. Wuu, H. H. Tung, K. Y. Yu, K. C. Huang. Characterization of InP/GaAs epilayers grown on Si substrates by low‐pressure organometallic vapor phase epitaxy. Appl. Phys. Lett., 52, 880-882(1988).

    [33] M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, M. Sugo. Defect reduction effects in GaAs on Si substrates by thermal annealing. Appl. Phys. Lett., 53, 2293-2295(1988).

    [34] T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, R. Beanland. Design rules for dislocation filters. J. Appl. Phys., 116, 063508(2014).

    [35] L. Megalini, S. Šuran Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, J. Klamkin. Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition. Materials, 11, 337(2018).

    [36] A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express, 20, 22181-22187(2012).

    [37] T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, Y. Okano. Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer. Appl. Phys. Lett., 97, 183104(2010).

    [38] N.-T. Yeh, T.-E. Nee, J.-I. Chyi, T. M. Hsu, C. C. Huang. Matrix dependence of strain-induced wavelength shift in self-assembled InAs quantum-dot heterostructures. Appl. Phys. Lett., 76, 1567-1569(2000).

    [39] P. Hazdra, J. Oswald, V. Komarnitskyy, K. Kuldová, A. Hospodková, E. Hulicius, J. Pangrác. Self-assembled InAs/GaAs quantum dots covered by different strain reducing layers exhibiting strong photo- and electroluminescence in 1.3 and 1.55  μm bands. J. Nanosci. Nanotechnol., 11, 6804-6809(2011).

    [40] Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, S.-C. Wang. Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers. J. Lightwave Technol., 24, 536-543(2006).

    [41] M. J. Mondry, D. I. Babic, J. E. Bowers, L. A. Coldren. Refractive indexes of (Al, Ga, In)As epilayers on InP for optoelectronic applications. IEEE Photon. Technol. Lett., 4, 627-630(1992).

    Wei Luo, Ying Xue, Jie Huang, Liying Lin, Bei Shi, Kei May Lau. Comparison of growth structures for continuous-wave electrically pumped 1.55 μm quantum dash lasers grown on (001) Si[J]. Photonics Research, 2020, 8(12): 1888
    Download Citation