• Infrared and Laser Engineering
  • Vol. 53, Issue 7, 20240146 (2024)
Weiwei HE1, Jiarui SU1, Yutao FENG2, Houmao WANG3..., Haotian LI1, Kuijun WU1 and Faquan LI4,*|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Electronic Information, Yantai University, Yantai 264005, China
  • 2Xi'an Institute of Optics Precision Mechanic, Chinese Academy of Sciences, Xi'an 710119, China
  • 3National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • 4Institute of Precision Measurement Science and Technology Innovation, Chinese Academy of Sciences, Wuhan 430071, China
  • show less
    DOI: 10.3788/IRLA20240146 Cite this Article
    Weiwei HE, Jiarui SU, Yutao FENG, Houmao WANG, Haotian LI, Kuijun WU, Faquan LI. Review of satellite remote sensing technology for near-space atmospheric wind field and temperature field[J]. Infrared and Laser Engineering, 2024, 53(7): 20240146 Copy Citation Text show less
    References

    [1] Daren LV, Zeyu CHEN, Xia GUO et al. Recent progress in near space atmospheric environment study. Advances in Mechanics, 39, 674-682(2009).

    [2] Yutao FENG, Di FU, Zengliang ZHAO et al. An overview of spaceborne atmospheric wind field measurement with passive optical remote sensing. Acta Optica Sinica, 43, 0601011(2023).

    [3] Bing CHEN, Yong ZHENG, Zhanglei CHEN et al. A review of celestial navigation system on near space hypersonic vehicle. Acta Aeronauticaet Astronautica Sinica, 41, 623686-1-62368-12(2020).

    [4] Weiwei HE, Kuijun WU, Di FU et al. Instrument design and forward modeling of near-space wind and temperature sensing interferometer. Optics and Precision Engineering, 28, 1678-1689(2020).

    [5] Girolamo P DI, A BEHRENDT, V WULFMEYER. Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: performance simulations. Optics Express, 26, 8125-8161(2018).

    [6] REITEBUCH O. The Spacebne Wind Lidar Mission ADMAeolus [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 815827.

    [7] Zhongyu HU, Lingbing BU. Review of the progress of Aeolus space-borne wind measurement lidar. Infrared and Laser Engineering, 52, 20220691(2023).

    [8] Jingsong WANG, Dong LIU. Comparison and analysis of payloads performance for active and passive spaceborne atmospheric detection. Acta Optica Sinica, 43, 1899902(2023).

    [9] G G SHEPHERD, G THUILLIER, Y M CHO et al. The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective. Reviews of Geophysics, 50, 1-38(2012).

    [10] G G SHEPHERD, G THUILLIER, W A GAULT et al. WINDII, the wind imaging interferometer on the upper atmosphere research satellite. Journal of Geophysical Research, 98, 10725-10750(1993).

    [11] KILLEEN T L, SKINNER W R, JOHNSON R M, et al. TIMED Doppler interferometer (TIDI) [C]Proc of SPIE, 1999, 3756: 289301.

    [12] T L KILLEEN, Q WU, S C SOLOMON et al. TIMED Doppler interferometer: overview and recent results. Journal of Geophysical Research: Space Physics, 111, A10S01(2006).

    [13] WU Q, GABLEHOUSE R D, GELL D A, et al. Wind measurements by the TIMED Doppler interferometer (TIDI) [C]AGU Spring Meeting Abstracts, 2002: SA52B02.

    [14] B J HARDING, J J MAKELA, R C ENGLERT et al. The MIGHTI wind retrieval algorithm: description and verification. Space Science Reviews, 212, 585-600(2017).

    [15] M H STEVENS, C R ENGLERT, J M HARLANDER et al. Retrieval of lower thermospheric temperatures from O2 A band emission: the MIGHTI experiment on ICON. Space Science Reviews, 214, 4(2018).

    [16] P B HAYS, V J ABREU, M E DOBBS et al. The high-resolution Doppler imager on the upper atmosphere research satellite. Journal of Geophysical Research, 98, 10713-10723(1993).

    [17] D A ORTLAND, P B HAYS, W R SKINNER et al. Remote sensing of mesospheric temperature and O2(1Σ) band volume emission rates with the high-resolution Doppler imager. Journal of Geophysical Research, 103, 1821-1835(1998).

    [18] V J ABREU, P B HAYS, W R SKINNER. The high resolution Doppler imager. Optics and Photonics News, 2, 28-30(1991).

    [19] Weiwei HE, Xiangrui HU, Houmao WANG et al. Influence of scattered sunlight for wind measurements with the O2(a1Δg) dayglow. Remote Sensing, 15, 232(2022).

    [20] WARD W E, GAULT W A, SHEPHERD G G. Waves Michelson interferometer: a visiblenearIR interferometer f observing dle atmosphere dynamics constituents [C]Proc of SPIE, 2001, 4540: 100111.

    [21] G G SHEPHERD, I C MCDADE, W A GAULT et al. The stratospheric wind interferometer for transport studies (SWIFT). Advances in Space Research, 27, 1071-1079(2001).

    [22] P RAHNAMA, W A GAULT, I C MCDADE et al. Scientific assessment of the SWIFT instrument design. Journal of Atmospheric and Oceanic Technology, 30, 2081-2094(2013).

    [23] P E SHEESE, E J LLEWELLYN, R L GATTINGER et al. Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra. Canadian Journal of Physics, 88, 919-925(2010).

    [24] III J M RUSSELL, M G MLYNCZAK, L L GORDLEY et al. Overview of the SABER experiment and preliminary calibration results. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, 3756, 277-288(1999).

    [25] C J MERTENS, III J M RUSSELL, M G MLYNCZAK et al. Kinetic temperature and carbon dioxide from broadband infrared limb emission measurements taken from the TIMED/SABER instrument. Advances in Space Research, 43, 15-27(2009).

    [26] H FISCHER, M BIRK, C BLOM et al. MIPAS: an instrument for atmospheric and climate research. Atmospheric Chemistry and Physics, 8, 2151-2188(2008).

    [27] M GARCÍA-COMAS, B FUNKE, M LÓPEZ-PUERTAS et al. On the quality of MIPAS kinetic temperature in the middle atmosphere. Atmospheric Chemistry and Physics, 12, 6009-6039(2012).

    [28] BERNATH P F, MCELROY C T, ABRAMS M C, et al. Atmospheric chemistry experiment (ACE): mission overview [J]. Geophysical Research Letters , 2005, 32(15): L15S01.

    [29] R T MENZIES, W H HUNT, D M TRATT. Lidar in-space technology experiment measurements of sea surface directional reflectance and the link to surface wind speed. Applied Optics, 37, 5550-5559(1998).

    [30] M D WINKER, R C TREPTE. Laminar cirrus observed near the tropical tropopause by LITE. Geophysical Research Letters, 25, 3351-3354(1998).

    [31] V CUOMO, D P GIROLAMO, G PAPPALARDO et al. Lidar in space technology experiment correlative measurements by lidar in Potenza, southern Italy. Journal of Geophysical Research, 103, 11455-11464(1998).

    [32] Binglong CHEN, Zhongdong YANG, Min MIN et al. Application requirements and research progress of spaceborne Doppler wind lidar. Laser and Optoelectronics Progress, 57, 190003(2020).

    [33] LEMMERZ C. Airbne wind lidar measurements suppting the prelaunch validation of ESA''s Aeolus mission [C]ESAMOST Dragon 3 Symposium, 2015.

    [34] KHONEN T, KEINANEN P, PASANEN M, et al. Polishing testing of the 1.5 m SiC M1 mirr of the ALADIN instrument on the ADMAeolus satellite of ESA[C]Proc of SPIE, 2008, 7102: 430436.

    [35] KANITZ T, WERNHAM D, ALVAREZ E, et al. AeolusESA''s wind lidar mission, a brief status [C]IGARSS 20202020 IEEE International Geoscience Remote Sensing Symposium, 2020: 34633466.

    [36] STRAUME A G, ELFVING A, WERNHAM D, et al. ESA’s spacebne lidar mission ADMAeolus; recent achievements preparations f launch [C]EPJ Web of Conferences, 2016, 119: 01001.

    [37] REITEBUCH O, LEMMERZ C, MARKSTEINER U, et al. Airbne wind lidar observations in the Nth Atlantic f preparation of the ADMAeolus validation [C]Proc. 18th Coherent Laser Radar Conference CLRC, 2016.

    [38] B SOLHEIM, S BROWN, C SIORIS et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement. Atmosphere-Ocean, 53, 50-57(2015).

    [39] MARSH D R, SKINNER W R, MARSHALL A R, et al. High resolution Doppler imager observations of ozone in the mesosphere lower thermosphere [J]. Journal of Geophysical Research : Atmospheres , 2002, 107(D19): 4390.

    [40] R C ENGLERT, M J HARLANDER, M C BROWN et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): instrument design and calibration. Space Science Reviews, 212, 553-584(2017).

    [41] O DUBOVIK, G L SCHUSTER, F XU et al. Grand challenges in satellite remote sensing. Frontiers in Remote Sensing, 2, 619818(2021).

    [42] GAULT W A, WARD W E, SHEPHERD G G, et al. Optical Doppler imaging of atmospheric winds [C]IEEE 1999 International Geoscience Remote Sensing Symposium, 1999, 3: 16121615.

    [43] Weiwei HE, Kuijun WU, Yutao FENG et al. The near-space wind and temperature sensing interferometer: forward model and measurement simulation. Remote Sensing, 11, 914(2019).

    [44] V YANKOVSKY, R MANUILOVA, A BABAEV et al. Model of electronic-vibrational kinetics of the O3 and O2 photolysis products in the middle atmosphere: applications to water vapour retrievals from SABER/TIMED 6.3 μm radiance measurements. International Journal of Remote Sensing, 32, 3065-3078(2011).

    [45] V A YANKOVSKY, A S BABAEV. Photolysis of O3 at Hartley, Chappuis, Huggins, and Wulf bands in the middle atmosphere: vibrational kinetics of oxygen molecules O2(X3Unknown environment 'document', ν ≤ 35). Atmospheric and Oceanic Optics, 24, 6-16(2011).

    [46] V K MARTYSHENKO, A V YANKOVSKY. IR band of O2 at 1.27 μm as the tracer of O3 in the mesosphere and lower thermosphere: correction of the method. Geomagnetism and Aeronomy, 57, 229-241(2017).

    [47] V A YANKOVSKY, R O MANUILOVA. Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval. Annales Geophysicae, 24, 2823-2839(2006).

    [48] V A YANKOVSKY, K V MARTYSHENKO, R O MANUILOVA et al. Oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere. Journal of Molecular Spectroscopy, 327, 209-231(2016).

    [49] GAULT W A, SARGOYTCHEV S I, SHEPHERD G G. Dividedmirr scanning technique f a small Michelson interferometer [C]Proc of SPIE, 1996, 2830: 1518.

    [50] Weiwei HE, Kuijun WU, Yutao FENG et al. The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry. Remote Sensing, 11, 2702(2019).

    [51] Kuijun WU, Di FU, Yutao FENG et al. Simulation and application of the emission line O19P18 of O2(a1Δg) dayglow near 1.27 μm for wind observations from limb-viewing satellites. Optics Express, 26, 16984-16999(2018).

    [52] D P EDWARDS, M LÓPEZ‐PUERTAS, M A LÓPEZ‐VALVERDE. Non-local thermodynamic equilibrium studies of the 15-μm bands of CO2 for atmospheric remote sensing. Journal of Geophysical Research: Atmospheres, 98, 14955-14977(1993).

    [53] Weiwei HE, Kuijun WU, Yutao FENG et al. Forward simulation of limb-viewing Michelson wind imaging interferometer based on O3 radiation source. Acta Optica Sinica, 39, 0512005(2019).

    [54] ENGLERT C R, HARLER J M, BABCOCK D D, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept f measuring winds in plaary atmospheres [C]Proc of SPIE, 2006, 6303: 272279.

    [55] P RAHNAMA, W A GAULT, I C MCDADE et al. Onboard calibration and monitoring for the SWIFT instrument. Measurement Science and Technology, 23, 105801(2012).

    [56] Qinghua REN, Zhenxin YANG, Houmao WANG et al. Thermal drift effect of onboard long-wave infrared wind interferometer. Optics and Optoelectronic Technology, 21, 37(2023).

    [57] CHANG L C, SALINAS J, WANG J C, et al. A preliminary design f the INSPIRESat1 mission satellite bus: expling the dle upper atmosphere with CubeSats [EBOL]. (20170721) [20240327]. https:digitalcommons.usu.edusmallsat2016S4LEOMis5.

    [58] G BHARTI, S M KRISHNA, V SINGH. Radiative cooling due to NO at 5.3 μm emission as observed by TIMED/SABER over Asian sector. Advances in Space Research, 64, 1989-2001(2019).

    [59] L L GORDLEY, B T MARSHALL. Doppler wind and temperature sounder: new approach using gas filter radiometry. Journal of Applied Remote Sensing, 5, 3770-3774(2011).

    [60] MCHUGH M J, GDLEY L L, MARSHALL B T, et al. The Doppler wind temperature sounder (DWTS): enabling nextgeneration weather space weather fecasts [C]Proc of SPIE, 2013, 8739: 87390U.

    [61] D J MCCLEESE, J S MARGOLIS. Remote sensing of stratospheric and mesospheric winds by gas correlation electrooptic phase-modulation spectroscopy. Applied Optics, 22, 2528-2534(1983).

    [62] D J MCCLEESE, J S MARGOLIS, J BALLARD. Measurements of Doppler shifts by gas correlation spectroscopy. Applied Optics, 23, 527-528(1984).

    [63] Kuijun WU, Weiwei HE, Guangbao YU et al. Molecular filter infrared imaging technology and its application in photoelectric detection (invited). Infrared and Laser Engineering, 48, 0402003(2019).

    Weiwei HE, Jiarui SU, Yutao FENG, Houmao WANG, Haotian LI, Kuijun WU, Faquan LI. Review of satellite remote sensing technology for near-space atmospheric wind field and temperature field[J]. Infrared and Laser Engineering, 2024, 53(7): 20240146
    Download Citation