[1] Daren LV, Zeyu CHEN, Xia GUO et al. Recent progress in near space atmospheric environment study. Advances in Mechanics, 39, 674-682(2009).
[2] Yutao FENG, Di FU, Zengliang ZHAO et al. An overview of spaceborne atmospheric wind field measurement with passive optical remote sensing. Acta Optica Sinica, 43, 0601011(2023).
[3] Bing CHEN, Yong ZHENG, Zhanglei CHEN et al. A review of celestial navigation system on near space hypersonic vehicle. Acta Aeronauticaet Astronautica Sinica, 41, 623686-1-62368-12(2020).
[4] Weiwei HE, Kuijun WU, Di FU et al. Instrument design and forward modeling of near-space wind and temperature sensing interferometer. Optics and Precision Engineering, 28, 1678-1689(2020).
[5] Girolamo P DI, A BEHRENDT, V WULFMEYER. Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: performance simulations. Optics Express, 26, 8125-8161(2018).
[6] REITEBUCH O. The Spacebne Wind Lidar Mission ADMAeolus [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 815827.
[7] Zhongyu HU, Lingbing BU. Review of the progress of Aeolus space-borne wind measurement lidar. Infrared and Laser Engineering, 52, 20220691(2023).
[8] Jingsong WANG, Dong LIU. Comparison and analysis of payloads performance for active and passive spaceborne atmospheric detection. Acta Optica Sinica, 43, 1899902(2023).
[9] G G SHEPHERD, G THUILLIER, Y M CHO et al. The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective. Reviews of Geophysics, 50, 1-38(2012).
[10] G G SHEPHERD, G THUILLIER, W A GAULT et al. WINDII, the wind imaging interferometer on the upper atmosphere research satellite. Journal of Geophysical Research, 98, 10725-10750(1993).
[11] KILLEEN T L, SKINNER W R, JOHNSON R M, et al. TIMED Doppler interferometer (TIDI) [C]Proc of SPIE, 1999, 3756: 289301.
[12] T L KILLEEN, Q WU, S C SOLOMON et al. TIMED Doppler interferometer: overview and recent results. Journal of Geophysical Research: Space Physics, 111, A10S01(2006).
[13] WU Q, GABLEHOUSE R D, GELL D A, et al. Wind measurements by the TIMED Doppler interferometer (TIDI) [C]AGU Spring Meeting Abstracts, 2002: SA52B02.
[14] B J HARDING, J J MAKELA, R C ENGLERT et al. The MIGHTI wind retrieval algorithm: description and verification. Space Science Reviews, 212, 585-600(2017).
[15] M H STEVENS, C R ENGLERT, J M HARLANDER et al. Retrieval of lower thermospheric temperatures from O2 A band emission: the MIGHTI experiment on ICON. Space Science Reviews, 214, 4(2018).
[16] P B HAYS, V J ABREU, M E DOBBS et al. The high-resolution Doppler imager on the upper atmosphere research satellite. Journal of Geophysical Research, 98, 10713-10723(1993).
[17] D A ORTLAND, P B HAYS, W R SKINNER et al. Remote sensing of mesospheric temperature and O2(1Σ) band volume emission rates with the high-resolution Doppler imager. Journal of Geophysical Research, 103, 1821-1835(1998).
[18] V J ABREU, P B HAYS, W R SKINNER. The high resolution Doppler imager. Optics and Photonics News, 2, 28-30(1991).
[19] Weiwei HE, Xiangrui HU, Houmao WANG et al. Influence of scattered sunlight for wind measurements with the O2(a1Δg) dayglow. Remote Sensing, 15, 232(2022).
[20] WARD W E, GAULT W A, SHEPHERD G G. Waves Michelson interferometer: a visiblenearIR interferometer f observing dle atmosphere dynamics constituents [C]Proc of SPIE, 2001, 4540: 100111.
[21] G G SHEPHERD, I C MCDADE, W A GAULT et al. The stratospheric wind interferometer for transport studies (SWIFT). Advances in Space Research, 27, 1071-1079(2001).
[22] P RAHNAMA, W A GAULT, I C MCDADE et al. Scientific assessment of the SWIFT instrument design. Journal of Atmospheric and Oceanic Technology, 30, 2081-2094(2013).
[23] P E SHEESE, E J LLEWELLYN, R L GATTINGER et al. Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra. Canadian Journal of Physics, 88, 919-925(2010).
[24] III J M RUSSELL, M G MLYNCZAK, L L GORDLEY et al. Overview of the SABER experiment and preliminary calibration results. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, 3756, 277-288(1999).
[25] C J MERTENS, III J M RUSSELL, M G MLYNCZAK et al. Kinetic temperature and carbon dioxide from broadband infrared limb emission measurements taken from the TIMED/SABER instrument. Advances in Space Research, 43, 15-27(2009).
[26] H FISCHER, M BIRK, C BLOM et al. MIPAS: an instrument for atmospheric and climate research. Atmospheric Chemistry and Physics, 8, 2151-2188(2008).
[27] M GARCÍA-COMAS, B FUNKE, M LÓPEZ-PUERTAS et al. On the quality of MIPAS kinetic temperature in the middle atmosphere. Atmospheric Chemistry and Physics, 12, 6009-6039(2012).
[28] BERNATH P F, MCELROY C T, ABRAMS M C, et al. Atmospheric chemistry experiment (ACE): mission overview [J]. Geophysical Research Letters , 2005, 32(15): L15S01.
[29] R T MENZIES, W H HUNT, D M TRATT. Lidar in-space technology experiment measurements of sea surface directional reflectance and the link to surface wind speed. Applied Optics, 37, 5550-5559(1998).
[30] M D WINKER, R C TREPTE. Laminar cirrus observed near the tropical tropopause by LITE. Geophysical Research Letters, 25, 3351-3354(1998).
[31] V CUOMO, D P GIROLAMO, G PAPPALARDO et al. Lidar in space technology experiment correlative measurements by lidar in Potenza, southern Italy. Journal of Geophysical Research, 103, 11455-11464(1998).
[32] Binglong CHEN, Zhongdong YANG, Min MIN et al. Application requirements and research progress of spaceborne Doppler wind lidar. Laser and Optoelectronics Progress, 57, 190003(2020).
[33] LEMMERZ C. Airbne wind lidar measurements suppting the prelaunch validation of ESA''s Aeolus mission [C]ESAMOST Dragon 3 Symposium, 2015.
[34] KHONEN T, KEINANEN P, PASANEN M, et al. Polishing testing of the 1.5 m SiC M1 mirr of the ALADIN instrument on the ADMAeolus satellite of ESA[C]Proc of SPIE, 2008, 7102: 430436.
[35] KANITZ T, WERNHAM D, ALVAREZ E, et al. AeolusESA''s wind lidar mission, a brief status [C]IGARSS 20202020 IEEE International Geoscience Remote Sensing Symposium, 2020: 34633466.
[36] STRAUME A G, ELFVING A, WERNHAM D, et al. ESA’s spacebne lidar mission ADMAeolus; recent achievements preparations f launch [C]EPJ Web of Conferences, 2016, 119: 01001.
[37] REITEBUCH O, LEMMERZ C, MARKSTEINER U, et al. Airbne wind lidar observations in the Nth Atlantic f preparation of the ADMAeolus validation [C]Proc. 18th Coherent Laser Radar Conference CLRC, 2016.
[38] B SOLHEIM, S BROWN, C SIORIS et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement. Atmosphere-Ocean, 53, 50-57(2015).
[39] MARSH D R, SKINNER W R, MARSHALL A R, et al. High resolution Doppler imager observations of ozone in the mesosphere lower thermosphere [J]. Journal of Geophysical Research : Atmospheres , 2002, 107(D19): 4390.
[40] R C ENGLERT, M J HARLANDER, M C BROWN et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): instrument design and calibration. Space Science Reviews, 212, 553-584(2017).
[41] O DUBOVIK, G L SCHUSTER, F XU et al. Grand challenges in satellite remote sensing. Frontiers in Remote Sensing, 2, 619818(2021).
[42] GAULT W A, WARD W E, SHEPHERD G G, et al. Optical Doppler imaging of atmospheric winds [C]IEEE 1999 International Geoscience Remote Sensing Symposium, 1999, 3: 16121615.
[43] Weiwei HE, Kuijun WU, Yutao FENG et al. The near-space wind and temperature sensing interferometer: forward model and measurement simulation. Remote Sensing, 11, 914(2019).
[44] V YANKOVSKY, R MANUILOVA, A BABAEV et al. Model of electronic-vibrational kinetics of the O3 and O2 photolysis products in the middle atmosphere: applications to water vapour retrievals from SABER/TIMED 6.3 μm radiance measurements. International Journal of Remote Sensing, 32, 3065-3078(2011).
[45] V A YANKOVSKY, A S BABAEV. Photolysis of O3 at Hartley, Chappuis, Huggins, and Wulf bands in the middle atmosphere: vibrational kinetics of oxygen molecules O2(X3, ν ≤ 35). Atmospheric and Oceanic Optics, 24, 6-16(2011).
[46] V K MARTYSHENKO, A V YANKOVSKY. IR band of O2 at 1.27 μm as the tracer of O3 in the mesosphere and lower thermosphere: correction of the method. Geomagnetism and Aeronomy, 57, 229-241(2017).
[47] V A YANKOVSKY, R O MANUILOVA. Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval. Annales Geophysicae, 24, 2823-2839(2006).
[48] V A YANKOVSKY, K V MARTYSHENKO, R O MANUILOVA et al. Oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere. Journal of Molecular Spectroscopy, 327, 209-231(2016).
[49] GAULT W A, SARGOYTCHEV S I, SHEPHERD G G. Dividedmirr scanning technique f a small Michelson interferometer [C]Proc of SPIE, 1996, 2830: 1518.
[50] Weiwei HE, Kuijun WU, Yutao FENG et al. The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry. Remote Sensing, 11, 2702(2019).
[51] Kuijun WU, Di FU, Yutao FENG et al. Simulation and application of the emission line O19P18 of O2(a1Δg) dayglow near 1.27 μm for wind observations from limb-viewing satellites. Optics Express, 26, 16984-16999(2018).
[52] D P EDWARDS, M LÓPEZ‐PUERTAS, M A LÓPEZ‐VALVERDE. Non-local thermodynamic equilibrium studies of the 15-μm bands of CO2 for atmospheric remote sensing. Journal of Geophysical Research: Atmospheres, 98, 14955-14977(1993).
[53] Weiwei HE, Kuijun WU, Yutao FENG et al. Forward simulation of limb-viewing Michelson wind imaging interferometer based on O3 radiation source. Acta Optica Sinica, 39, 0512005(2019).
[54] ENGLERT C R, HARLER J M, BABCOCK D D, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept f measuring winds in plaary atmospheres [C]Proc of SPIE, 2006, 6303: 272279.
[55] P RAHNAMA, W A GAULT, I C MCDADE et al. Onboard calibration and monitoring for the SWIFT instrument. Measurement Science and Technology, 23, 105801(2012).
[56] Qinghua REN, Zhenxin YANG, Houmao WANG et al. Thermal drift effect of onboard long-wave infrared wind interferometer. Optics and Optoelectronic Technology, 21, 37(2023).
[57] CHANG L C, SALINAS J, WANG J C, et al. A preliminary design f the INSPIRESat1 mission satellite bus: expling the dle upper atmosphere with CubeSats [EBOL]. (20170721) [20240327]. https:digitalcommons.usu.edusmallsat2016S4LEOMis5.
[58] G BHARTI, S M KRISHNA, V SINGH. Radiative cooling due to NO at 5.3 μm emission as observed by TIMED/SABER over Asian sector. Advances in Space Research, 64, 1989-2001(2019).
[59] L L GORDLEY, B T MARSHALL. Doppler wind and temperature sounder: new approach using gas filter radiometry. Journal of Applied Remote Sensing, 5, 3770-3774(2011).
[60] MCHUGH M J, GDLEY L L, MARSHALL B T, et al. The Doppler wind temperature sounder (DWTS): enabling nextgeneration weather space weather fecasts [C]Proc of SPIE, 2013, 8739: 87390U.
[61] D J MCCLEESE, J S MARGOLIS. Remote sensing of stratospheric and mesospheric winds by gas correlation electrooptic phase-modulation spectroscopy. Applied Optics, 22, 2528-2534(1983).
[62] D J MCCLEESE, J S MARGOLIS, J BALLARD. Measurements of Doppler shifts by gas correlation spectroscopy. Applied Optics, 23, 527-528(1984).
[63] Kuijun WU, Weiwei HE, Guangbao YU et al. Molecular filter infrared imaging technology and its application in photoelectric detection (invited). Infrared and Laser Engineering, 48, 0402003(2019).