• Infrared and Laser Engineering
  • Vol. 53, Issue 7, 20240146 (2024)
Weiwei HE1, Jiarui SU1, Yutao FENG2, Houmao WANG3..., Haotian LI1, Kuijun WU1 and Faquan LI4,*|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Electronic Information, Yantai University, Yantai 264005, China
  • 2Xi'an Institute of Optics Precision Mechanic, Chinese Academy of Sciences, Xi'an 710119, China
  • 3National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • 4Institute of Precision Measurement Science and Technology Innovation, Chinese Academy of Sciences, Wuhan 430071, China
  • show less
    DOI: 10.3788/IRLA20240146 Cite this Article
    Weiwei HE, Jiarui SU, Yutao FENG, Houmao WANG, Haotian LI, Kuijun WU, Faquan LI. Review of satellite remote sensing technology for near-space atmospheric wind field and temperature field[J]. Infrared and Laser Engineering, 2024, 53(7): 20240146 Copy Citation Text show less
    Optical architecture of ALADIN[37]
    Fig. 1. Optical architecture of ALADIN[37]
    Physical diagram of the WINDII instrument[9]
    Fig. 2. Physical diagram of the WINDII instrument[9]
    SWIFT-DASH optical frame [38]
    Fig. 3. SWIFT-DASH optical frame [38]
    HRDI instrument[16]
    Fig. 4. HRDI instrument[16]
    Major TIDI subsystems. (a) The four telescopes; (b) Profiler[12]
    Fig. 5. Major TIDI subsystems. (a) The four telescopes; (b) Profiler[12]
    (a) MIGHTI optics; (b) Stray light model[40]
    Fig. 6. (a) MIGHTI optics; (b) Stray light model[40]
    Production and loss mechanisms of the \begin{document}$ \mathrm{O}_2\left(a^1\Delta_g\right) $\end{document} state[19]
    Fig. 7. Production and loss mechanisms of the Unknown environment 'document' state[19]
    Calculated \begin{document}$ \mathrm{O}_2\left(a^1\Delta_g\right) $\end{document} concentration profiles for different production mechanisms[19]
    Fig. 8. Calculated Unknown environment 'document' concentration profiles for different production mechanisms[19]
    Infrared band O2 limb viewing radiation and transmission spectra at tangent heights of 40 km, 60 km, and 80 km. (a) Radiation spectra at 80 km; (b) Transmission spectra at 80 km; (c) Radiation spectra at 60 km; (d) Transmission spectra at 60 km; (e) Radiation spectra at 40 km; (f) Transmission spectra at 40 km[43]
    Fig. 9. Infrared band O2 limb viewing radiation and transmission spectra at tangent heights of 40 km, 60 km, and 80 km. (a) Radiation spectra at 80 km; (b) Transmission spectra at 80 km; (c) Radiation spectra at 60 km; (d) Transmission spectra at 60 km; (e) Radiation spectra at 40 km; (f) Transmission spectra at 40 km[43]
    WAMI optical configuration[20]
    Fig. 10. WAMI optical configuration[20]
    Schematic diagram of optical system of the near-space wind and temperature sensing interferometer[43]
    Fig. 11. Schematic diagram of optical system of the near-space wind and temperature sensing interferometer[43]
    The standard deviation of random error of Doppler wind speed and temperature measured by NWSTI. (a) Wind speed error; (b) Temperature error[43]
    Fig. 12. The standard deviation of random error of Doppler wind speed and temperature measured by NWSTI. (a) Wind speed error; (b) Temperature error[43]
    Limb radiation spectrum of O3. (a) Limb radiation spectra of O3 at 8.8 μm band; (b) Enlarged image in the box in Fig.13 (a) [53]
    Fig. 13. Limb radiation spectrum of O3. (a) Limb radiation spectra of O3 at 8.8 μm band; (b) Enlarged image in the box in Fig.13 (a) [53]
    Schematic diagram of SWIFT optical system[53]
    Fig. 14. Schematic diagram of SWIFT optical system[53]
    SWIFT-DASH monolithic optics assembly[38]
    Fig. 15. SWIFT-DASH monolithic optics assembly[38]
    Interference patterns of forward simulation. (a) Interference patterns during daytime; (b) Interference patterns during nighttime[53]
    Fig. 16. Interference patterns of forward simulation. (a) Interference patterns during daytime; (b) Interference patterns during nighttime[53]
    Profile of wind measurement error[53]
    Fig. 17. Profile of wind measurement error[53]
    (a) Instrument thermal background signal and (b) combined signal (sum of pure atmospheric signal and instrument thermal background signal) with noise added during the first step of the first field of view[56]
    Fig. 18. (a) Instrument thermal background signal and (b) combined signal (sum of pure atmospheric signal and instrument thermal background signal) with noise added during the first step of the first field of view[56]
    Composition error[56]
    Fig. 19. Composition error[56]
    Transmission spectra: (a) is for NO[59] and (b) is for 13CO2[59]
    Fig. 20. Transmission spectra: (a) is for NO[59] and (b) is for 13CO2[59]
    (a) DWTS viewing geometry; (b) Illustration of the Doppler modulation concept[59]
    Fig. 21. (a) DWTS viewing geometry; (b) Illustration of the Doppler modulation concept[59]
    DWTS instrument concepts: (a) Infrared Camera; (b) Dual-instrument full mechanical drawing[59]
    Fig. 22. DWTS instrument concepts: (a) Infrared Camera; (b) Dual-instrument full mechanical drawing[59]
    Optical and mechanical structure of doppler molecular frequency discriminator[63]
    Fig. 23. Optical and mechanical structure of doppler molecular frequency discriminator[63]
    Wind temperature detection accuracy profile. (a) Wind detection accuracy; (b) Temperature detection accuracy[63]
    Fig. 24. Wind temperature detection accuracy profile. (a) Wind detection accuracy; (b) Temperature detection accuracy[63]
    FilternumberEmissionTotaldays/dYear/d
    1991199219931994199519961997
    1bg-O(1S)10133321922217016613964
    2O(1S)7641616717211312913037
    3O(1D)19194451592251
    4OH/O+427221221239042424
    5bg-OH56227137156103672844
    6OH3032284815830424
    7O26001419421582302045
    Table 1. Summary of WINDII observations[9]
    Detection methodsInstrument nameLaunch timeDetecting target sourcesAltitude range/kmAccuracyInstrument type
    ActiveALADIN2018-0-301-3 m/sDoppler lidar
    PassiveWINDII1992OI 557.7 nm, OI 630.0 nm, OH 734.1 nm, O2 763.2 nm80-3005 m/s, 18-40 KFour step Michelson interferometer
    SWIFT-O3 8.823 μm20-605 m/sFour zone Michelson interferometer
    HRDI1992OI 630.0 nm, O2 690.0 nm, O2 762.0 nm10-40, 60-1105 m/sTriple etalon Fabry-Perot interferometer
    TIDI2001OI 557.7 nm, OI 630.0 nm, O2 867.0 nm60-3003 m/s, 5-40 KFabry-Perot interferometer
    MIGHTI2019OI 557.7 nm, OI 630.0 nm, O2 762.0 nm90-3005 m/s, 2 KBroadband DASH interferometer
    Table 2. Representative instruments for remote sensing of atmospheric wind temperature
    EmissionLineWavelength in air/ nmRel. Int. at 250 Kdl/dt/ K−1
    ${{\text{O}}_{\text{2}}}^{\text{1}}{{\Delta (0,0)}}$ strong$^{\text{R}}{\text{Q(9)}}$1264.0600.019−0.05%
    $^{\text{S}}{\text{R(3)}}$1264.2770.016−0.31
    $^{\text{R}}{\text{R(9)}}$1264.3860.023−0.05
    ${{\text{O}}_{\text{2}}}^{\text{1}}{{\Delta (0,0)}}$ weak$^{\text{P}}{\text{Q(19)}}$1278.2890.0045+0.70
    $^{\text{O}}{\text{P(11)}}$1278.4080.0068−0.12
    $ ^{\text{P}}{\text{P(19)}} $1278.5900.0041+0.70
    OH (8,5)${{\text{P}}_{\text{1}}}{\text{(4)}}$1315.682--
    O(1S)-557.73--
    Table 3. Emission lines[20]
    Measured parametersSpatial resolutionFOV rangeBeam-splitter centerSpectral bandwidth
    NO emission profile10 km horizon 2 km vertical20°× 20°4.7 μm44 cm−1 at 1851 cm−1
    CO2 emission profile24 cm−1 at 2270 cm−1
    Derived parametersAltitude rangeRangeResolutionRandom error (1 s)
    Temperature25-250 km100-1500 K< 1%< 2%
    Density25-250 km (Using hydrostatic constraint)NA< 1%< 5%
    CT wind25-200 km> ± 300 m/s< 1 m/s< 2 m/s
    AT wind25–55 & 80-200 km> ± 600 m/s< 2 m/s< 20 m/s
    Table 4. DWTS performance
    Performance metricsNear infrared bandLong-wave infrared bandMid-wave infrared band
    Altitude20-120 km10-60 km20-250 km
    Wind accuracy1-3 m/s(40-80 km)1-3 m/s1-2 m/s
    Temperature accuracy1-5 K-± 1 K
    Time coverageDayDay, nightDay, night
    Table 5. Summary of technical solutions
    Weiwei HE, Jiarui SU, Yutao FENG, Houmao WANG, Haotian LI, Kuijun WU, Faquan LI. Review of satellite remote sensing technology for near-space atmospheric wind field and temperature field[J]. Infrared and Laser Engineering, 2024, 53(7): 20240146
    Download Citation