• Photonics Research
  • Vol. 9, Issue 12, 2475 (2021)
Tong Xu1, Mingming Jiang1、*, Peng Wan1, Kai Tang1, Daning Shi1, and Caixia Kan1、2
Author Affiliations
  • 1College of Science, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • 2e-mail: cxkan@nuaa.edu.cn
  • show less
    DOI: 10.1364/PRJ.441999 Cite this Article Set citation alerts
    Tong Xu, Mingming Jiang, Peng Wan, Kai Tang, Daning Shi, Caixia Kan. Bifunctional ultraviolet light-emitting/detecting device based on a SnO2 microwire/p-GaN heterojunction[J]. Photonics Research, 2021, 9(12): 2475 Copy Citation Text show less

    Abstract

    SnO2 has attracted considerable attention due to its wide bandgap, large exciton binding energy, and outstanding electrical and optoelectronic features. Owing to the lack of reliable and reproducible p-type SnO2, many challenges on developing SnO2-based optoelectronic devices and their practical applications still remain. Herein, single-crystal SnO2 microwires (MWs) are acquired via the self-catalyzed approach. As a strategic alternative, n-SnO2 MW/p-GaN heterojunction was constructed, which exhibited selectable dual-functionalities of light-emitting and photodetection when operated by applying an appropriate voltage. The device illustrated a distinct near-ultraviolet light-emission peaking at 395.0 nm and a linewidth 50 nm. Significantly, the device characteristics, in terms of the main peak positions and linewidth, are nearly invariant as functions of various injection current, suggesting that quantum-confined Stark effect is essentially absent. Meanwhile, the identical n-SnO2 MW/p-GaN heterojunction can also achieve photovoltaic-type light detection. The device can steadily feature ultraviolet photodetecting ability, including the ultraviolet/visible rejection ratio (R360 nm/R400 nm) 1.5×103, high photodark current ratio of 105, fast response speed of 9.2/51 ms, maximum responsivity of 1.5 A/W, and detectivity of 1.3×1013 Jones under 360 nm light at -3 V bias. Therefore, the bifunctional device not only displays distinct near-ultraviolet light emission, but also has the ability of high-sensitive ultraviolet photodetection. The novel design of n-SnO2 MW/p-GaN heterojunction bifunctional systems is expected to open doors to practical application of SnO2 microstructures/nanostructures for large-scale device miniaturization, integration and multifunction in next-generation high-performance photoelectronic devices.
    R=IPIDPS.

    View in Article

    D=RA2eID,

    View in Article

    LDR=20  log(IP/ID).

    View in Article

    I=I0+Aet/τ1+Bet/τ2.

    View in Article

    Tong Xu, Mingming Jiang, Peng Wan, Kai Tang, Daning Shi, Caixia Kan. Bifunctional ultraviolet light-emitting/detecting device based on a SnO2 microwire/p-GaN heterojunction[J]. Photonics Research, 2021, 9(12): 2475
    Download Citation