• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 3, 301 (2023)
ZHANG Ruoya1, ZHU Qiaofen1,*, and ZHANG Yan2,**
Author Affiliations
  • 1Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038, China
  • 2Beijing Advanced Innovation Center for Imaging Theory and Technology, Key Laboratory of Terahertz Optoelectronics,Ministry of Education, Beijing Key Laboratory of Metamaterials and Devices, Department of Physics,Capital Normal University, Beijing 100048, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.03.002 Cite this Article
    Ruoya ZHANG, Qiaofen ZHU, Yan ZHANG. Research progress of tunable terahertz metamaterial absorbers[J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301 Copy Citation Text show less
    Terahertz absorber based on metal-patch. (a) Schematic diagram of structure and (b) the absorption curve at different incident angles under TE and TM polarization of the terahertz metamaterial absorber based on three-layer structure proposed by Tao et al [27];(c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on length l1 and l4 of the terahertz metamaterial absorber with multiband absorption proposed by Wang et al [28]
    Fig. 1. Terahertz absorber based on metal-patch. (a) Schematic diagram of structure and (b) the absorption curve at different incident angles under TE and TM polarization of the terahertz metamaterial absorber based on three-layer structure proposed by Tao et al [27];(c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on length l1 and l4 of the terahertz metamaterial absorber with multiband absorption proposed by Wang et al [28]
    Research history of tunable terahertz metamaterial absorber[27, 29-33]
    Fig. 2. Research history of tunable terahertz metamaterial absorber[27, 29-33]
    Single-band tunable terahertz metamaterial absorber. (a) Schematic diagram of structure and (b) the tunable changes of absorption curves depend on different Fermi energy level of the narrow band tunable terahertz absorber based on Dirac semi-metal proposed by Liu et al [34]; (c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on different temperature and Fermi energy level of the tunable terahertz metamaterial absorber based on hybrid materials proposed by Huang et al [35]
    Fig. 3. Single-band tunable terahertz metamaterial absorber. (a) Schematic diagram of structure and (b) the tunable changes of absorption curves depend on different Fermi energy level of the narrow band tunable terahertz absorber based on Dirac semi-metal proposed by Liu et al [34]; (c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on different temperature and Fermi energy level of the tunable terahertz metamaterial absorber based on hybrid materials proposed by Huang et al [35]
    Multi-band tunable terahertz metamaterial absorber. (a) Schematic diagram of structure and (b) the tunable changes of absorption curves depend on different Fermi energy level of the double band tunable terahertz metamaterial absorber with five layers proposed by Chen et al [50]; (c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on different Fermi energy level of the double band tunable terahertz absorber based on Dirac semi-metal proposed by Zhang et al [51]
    Fig. 4. Multi-band tunable terahertz metamaterial absorber. (a) Schematic diagram of structure and (b) the tunable changes of absorption curves depend on different Fermi energy level of the double band tunable terahertz metamaterial absorber with five layers proposed by Chen et al [50]; (c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on different Fermi energy level of the double band tunable terahertz absorber based on Dirac semi-metal proposed by Zhang et al [51]
    Broadband tunable terahertz metamaterial absorber. (a) Schematic diagram of structure and (b) the tunable changes of absorption curves depend on different conductivity of the narrow band tunable terahertz absorber based on vanadium oxide proposed by Song et al [65]; (c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on different Fermi energy level of the wide band tunable terahertz absorber based on graphene proposed by Mou et al [66]
    Fig. 5. Broadband tunable terahertz metamaterial absorber. (a) Schematic diagram of structure and (b) the tunable changes of absorption curves depend on different conductivity of the narrow band tunable terahertz absorber based on vanadium oxide proposed by Song et al [65]; (c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on different Fermi energy level of the wide band tunable terahertz absorber based on graphene proposed by Mou et al [66]
    Switchable bifunctional terahertz metamaterial absorber. (a) Schematic diagram of structure and (b) the tunable changes of absorption curves depend on different temperature of the double broadband switchable terahertz absorber proposed by Zhao et al [32];(c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on different Fermi energy level of the wide band and narrow band switchable dual function terahertz absorber based on graphene and vanadium dioxide composite proposed by Zhang et al [33]; (e) Schematic diagram of structure and (f) the tunable changes of absorption curves depend on different Fermi energy level of the switchable bifunctional terahertz absorber based on Dirac semi metal and vanadium dioxide proposed by Li et al [85]
    Fig. 6. Switchable bifunctional terahertz metamaterial absorber. (a) Schematic diagram of structure and (b) the tunable changes of absorption curves depend on different temperature of the double broadband switchable terahertz absorber proposed by Zhao et al [32];(c) Schematic diagram of structure and (d) the tunable changes of absorption curves depend on different Fermi energy level of the wide band and narrow band switchable dual function terahertz absorber based on graphene and vanadium dioxide composite proposed by Zhang et al [33]; (e) Schematic diagram of structure and (f) the tunable changes of absorption curves depend on different Fermi energy level of the switchable bifunctional terahertz absorber based on Dirac semi metal and vanadium dioxide proposed by Li et al [85]
    LayerMaterialParameterFequencyAbsorptanceFunctionReference
    3GrapheneEf : 0~0.6 eV0.48~1.579 THz>99%

    Single-band

    tunable terahertz

    metamaterial absorber

    [36]
    3Dirac semimetalEf : 65~85 meV2.46~3.16 THz>95%[37]
    4

    Dirac semimetal

    Strontium titanate

    Ef : 10~80 meV

    T: 300 K

    3.265~4.82 THz70%~99.9%[38]

    T: 200~300 K

    Ef =40 meV

    2.665~3.69 THz>99%
    3Strontium titanateT: 200~400 K1.71~2.48 THz>99%[39]
    7Liquid crystalV: 0~saturationred shift>90%[40]
    4InSbT: 160~350 K0.82~1.02 THz>88.7%[41]
    3Photoconductive siliconσ: 1~1×105 S/m0%~100%[42]
    Table 1. Summary of single-band tunable terahertz metamaterial absorber
    LayerMaterialParameterFrequencyAbsorptanceFunctionReference
    3GrapheneEf : 0.6~0.9 eV

    7.1~8.7 THz

    10.4~12.7 THz

    >85%Dual-band absorption[52]
    3

    Dirac semimetal

    VO2

    σ: 10~105 S/m

    Ef =0.13 eV

    6.5%~97.8%

    10%~99.27%

    9%~99.54%

    Triple-band absorption[53]

    Ef : 0.11~0.15 eV

    σ=105 S/m

    blue shift>90%
    3Strontium titanateT: 200~500 Kblue shift>95%Dual-band absorption[54]
    7Liquid crystalV: 0~12 Vred shift>80.1%Dual-band absorption[55]
    Table 2. Summary of multi-band tunable terahertz metamaterial absorber
    LayerMaterialParameterFrequencyAbsorptanceFunctionReference
    4

    Dirac semimetal

    Strontium titanate

    Ef : 40~0 meV

    T=300 K

    unchanged

    1.43~1.58 THz

    >80%

    BW=0.65 THz

    (absorptance>80%)

    [67]

    T: 250~400 K

    Ef =45 meV

    1.14~1.35 THz

    1.51~1.76 THz

    >80%
    3GrapheneEf : 0~0.7 eV1%~99%

    BW=0.76 THz

    (absorptance>90%)

    [68]
    3

    Graphene

    Graphene

    Ef : 0.6~1.0 eV3.35~4.15 THz>70%

    BW=1.13 THz

    (absorptance>90%)

    [69]
    5Ef : 0.7~1.1 eV

    2.86~5.08 THz

    3.16~6.01 THz

    >85%

    BW=2.85 THz

    (absorptance>90%)

    4

    Graphene

    VO2

    σ: 10~2×105 S/m

    Ef =0.1 eV

    28%~99%

    BW=1.70 THz

    (absorptance>90%)

    [70]

    Ef : 0.1~0.6 eV

    σ=2×105 S/m

    Blue shift>90%
    3Dirac semimetalEf : 40~80 meVBlue shift

    BW=2.70 THz

    (absorptance>90%)

    [71]
    3VO2σ: 200~2×105 S/m4%~100%

    BW=4.10 THz

    (absorptance>90%)

    [64]
    5

    Graphene

    Dirac semimetal

    Ef : 0 ~1.7 eV

    Ef = 60 meV

    5~7.44 THz

    4.79~8.99 THz

    >80%

    BW=4.20 THz

    (absorptance>90%)

    [72]

    Ef : 10~100 meV

    Ef =1.7 eV

    Blue shift
    Table 3. Summary of broadband tunable terahertz metamaterial absorber
    LayerMaterialParameterFrequencyAbsorptanceFunctionReference
    6VO2σ: 0~105 S/m

    Narrowband absorption switch to

    broadband absorption

    [86]
    5

    Graphene

    VO2

    σ: 40~2×105 S/m

    Ef= 0.7 eV

    broadband absorption switch to

    triple-band absorption

    [87]

    Ef : 0~0.7 eV

    σ= 40 S/m

    20%~100%BW=1.52 THz(absorptance>90%)

    Ef : 0.5~1.0 eV

    σ=2×105 S/m

    1~1.1 THz

    2.2~2.65 THz

    2.55~3.16 THz

    >90%triple-band absorption
    6

    Graphene

    VO2

    σ: 200~2×105 S/m

    Ef= 0.9 eV

    six-band absorption switch to

    broadband absorption

    [88]
    σ=2×105 S/m>90%BW=3.83 THz(absorptance>90%)

    Ef : 0 eV~1.0 eV

    σ= 200 S/m

    blue shift>85.1%six-band absorption
    6

    Graphene

    VO2

    σ: 0 S/m~2×105 S/m

    Ef= 0.7 eV

    broadband absorption switch to broadband absorption[89]
    σ=2×105 S/m>90%BW=2.25 THz(absorptance>90%)

    Ef : 0.01 eV~0.7 eV

    σ= 200 S/m

    5.2%~99.8%bandwidth=1.20 THz(absorptance>90%)
    4GrapheneEf : 150 meV~550 meV

    broadband absorption switch to

    triple-band absorption

    [90]
    3Photoconductive siliconσ: 1 S/m~5×105 S/mred shift

    dual-band absorption switch to

    single-band absorption

    [91]
    5

    Photoconductive silicon

    VO2

    σ(Si): 2.5×10-4 S/m

    σ(VO2): 2×105 S/m

    >90%BW=4.66 THz(absorptance>90%)[92]

    σ(Si): 8×104 S/m

    σ(VO2): 20 S/m

    >90%dual-band absorption

    σ(Si): 2.5×10-4~3×105 S/m

    σ(VO2) =20 S/m

    4%~99%

    σ(Si): 2.5×10-4~3×105 S/m

    σ(VO2) =2×105 S/m

    60%~99%

    σ(VO2): 20~2×105 S/m

    σ(Si) =2.5×10-4 S/m

    2%~99%

    σ(VO2): 20~2×105 S/m

    σ(Si) =8×104 S/m

    69%~99%
    Table 4. Summary of switchable bifunctional terahertz metamaterial absorber
    Ruoya ZHANG, Qiaofen ZHU, Yan ZHANG. Research progress of tunable terahertz metamaterial absorbers[J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301
    Download Citation