• Chinese Optics Letters
  • Vol. 19, Issue 12, 121601 (2021)
Lulin Wei1, Jie Li1, Haohao Wang1, Shuhong Nie2, Wenming Su2, Dafang Huang1、*, and Mingwei Zhu1、**
Author Affiliations
  • 1National Laboratory of Solid State Microstructures & Jiangsu Key Laboratory of Artificial Functional Materials & College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 2Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
  • show less
    DOI: 10.3788/COL202119.121601 Cite this Article Set citation alerts
    Lulin Wei, Jie Li, Haohao Wang, Shuhong Nie, Wenming Su, Dafang Huang, Mingwei Zhu. Ultra-fast and low-cost fabrication of transparent paper[J]. Chinese Optics Letters, 2021, 19(12): 121601 Copy Citation Text show less
    References

    [1] J. Lewis. Material challenge for flexible organic devices. Mater. Today, 9, 38(2006).

    [2] T. Someya, Z. Bao, G. G. Malliaras. The rise of plastic bioelectronics. Nature, 540, 379(2016).

    [3] Y. Xiao, H. Luo, R. Tang, J. Hou. Preparation and applications of electrospun optically transparent fibrous membrane. Polymers, 13, 506(2021).

    [4] A. B. Milstein, L. A. Jiang, J. X. Luu, E. L. Hines, K. I. Schultz. Acquisition algorithm for direct-detection ladars with Geiger-mode avalanche photodiodes. Appl. Opt., 47, 296(2008).

    [5] H. X. Zhang, L. S. Feng, Y. L. Hou, S. Su, J. Liu, W. Y. Liu, J. Liu, J. J. Xiong. Preparation and characterization of a liquid level sensor based on plastic fibers. Chin. Opt. Lett., 13, 080601(2015).

    [6] G. Y. Tang, J. Wei, W. Zhou, R. Q. Fan, M. Y. Wu, X. F. Xu. Multi-hole plastic optical fiber force sensor based on femtosecond laser micromachining. Chin. Opt. Lett., 12, 090604(2014).

    [7] J. Brahney, N. Mahowald, M. Prank, G. Cornwell, Z. Klimont, H. Matsui, K. A. Prather. Constraining the atmospheric limb of the plastic cycle. Proc. Natl. Acad. Sci. USA, 118, e2020719118(2021).

    [8] Y. S. Wang, M. Li, Y. Wang. Silk: a versatile biomaterial for advanced optics and photonics [Invited]. Chin. Opt. Lett., 18, 080004(2020).

    [9] F. Hoeng, A. Denneulin, J. Bras. Use of nanocellulose in printed electronics: a review. Nanoscale, 8, 13131(2016).

    [10] H. Zhu, Z. Fang, C. Preston, Y. Li, L. Hu. Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci., 7, 269(2014).

    [11] M. Wang, X. Jia, W. Liu, X. Lin. Water insoluble and flexible transparent film based on carboxymethyl cellulose. Carbohydr. Polym., 255, 117353(2021).

    [12] S. Tsuneyasu, R. Watanabe, N. Takeda, K. Uetani, S. Izakura, K. Kasuya, K. Takahashi, T. Satoh. Enhancement of luminance in powder electroluminescent devices by substrates of smooth and transparent cellulose nanofiber films. Nanomaterials, 11, 697(2021).

    [13] M. Tshwafo. Recent applications and innovations of cellulose based materials: a critical review. Cellul. Chem. Technol., 55, 1(2021).

    [14] J. Yang, X. Y. Zhang, P. Wang, H. Meng, Y. X. Wu, J. P. Xie, J. Y. Zhang. Preparation and characterization of SiO2/TiO2/methylcellulose hybrid thick films for optical waveguides. Chin. Opt. Lett., 3, 399(2005).

    [15] Y. H. Jung, T. H. Chang, H. Zhang, C. Yao, Q. Zheng, V. W. Yang, H. Mi, M. Kim, S. J. Cho, D. W. Park, H. Jiang, J. Lee, Y. Qiu, W. Zhou, Z. Cai, S. Gong, Z. Ma. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun., 6, 7170(2015).

    [16] H. Zhu, Z. Xiao, D. Liu, Y. Li, N. J. Weadock, Z. Fang, J. Huang, L. Hu. Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci., 6, 2105(2013).

    [17] X. Xu, J. Zhou, L. Jiang, G. Lubineau, T. Ng, B. S. Ooi, H. Y. Liao, C. Shen, L. Chen, J. Y. Zhu. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale, 8, 12294(2016).

    [18] A. Khan, Z. Abas, H. S. Kim, J. Kim. Recent progress on cellulose-based electro-active paper, its hybrid nanocomposites and applications. Sensors, 16, 1172(2016).

    [19] F. Brunetti, A. Operamolla, S. Castro-Hermosa, G. Lucarelli, V. Manca, G. M. Farinola, T. M. Brown. Printed solar cells and energy storage devices on paper substrates. Adv. Funct. Mater., 29, 1806798(2019).

    [20] Q. Cheng, D. Ye, W. Yang, S. Zhang, H. Chen, C. Chang, L. Zhang. Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells. ACS Sust. Chem. Eng., 6, 8040(2018).

    [21] S. J. Eichhorn, C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, A. Dufresne, K. M. Entwistle, P. J. Herrera-Franco, G. C. Escamilla, L. Groom, M. Hughes, C. Hill, T. G. Rials, P. M. Wild. Review: current international research into cellulosic fibres and composites. J. Mater. Sci., 36, 2107(2001).

    [22] M. Herrera, K. Thitiwutthisakul, X. Yang, P.-O. Rujitanaroj, R. Rojas, L. Berglund. Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp. Cellulose, 25, 3121(2018).

    [23] O. Nechyporchuk, M. N. Belgacem, J. Bras. Production of cellulose nanofibrils: a review of recent advances. Indust. Crops Prod., 93, 2(2016).

    [24] W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, Y. Hai. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym., 83, 1804(2011).

    [25] R. Baati, A. B. Mabrouk, A. Magnin, S. Boufi. CNFs from twin screw extrusion and high pressure homogenization: a comparative study. Carbohydr. Polym., 195, 321(2018).

    [26] S. V. Valenzuela, C. Valls, V. Schink, D. Sanchez, M. B. Roncero, P. Diaz, J. Martinez, F. I. J. Pastor. Differential activity of lytic polysaccharide monooxygenases on celluloses of different crystallinity. Effectiveness in the sustainable production of cellulose nanofibrils. Carbohydr. Polym., 207, 59(2019).

    [27] S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito, A. Isogai. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr. Polym., 84, 579(2011).

    [28] M. Nogi, S. Iwamoto, A. N. Nakagaito, H. Yano. Optically transparent nanofiber paper. Adv. Mater., 21, 1595(2009).

    [29] M. Zhu, C. Jia, Y. Wang, Z. Fang, J. Dai, L. Xu, D. Huang, J. Wu, Y. Li, J. Song, Y. Yao, E. Hitz, Y. Wang, L. Hu. Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics. ACS Appl. Mater. Interfaces, 10, 28566(2018).

    [30] M. Zhu, Y. Wang, S. Zhu, L. Xu, C. Jia, J. Dai, J. Song, Y. Yao, Y. Wang, Y. Li, D. Henderson, W. Luo, H. Li, M. L. Minus, T. Li, L. Hu. Anisotropic, transparent films with aligned cellulose nanofibers. Adv. Mater., 29, 1606284(2017).

    [31] L. Zhou, M. Yu, X. Chen, S. Nie, W.-Y. Lai, W. Su, Z. Cui, W. Huang. Screen-printed poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv. Funct. Mater., 28, 1705955(2018).

    [32] Y. Okahisa, H. Sakata. Effects of growth stage of bamboo on the production of cellulose nanofibers. Fibers Polym., 20, 1641(2019).

    [33] A. Alemdar, M. Sain. Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour. Technol., 99, 1664(2008).

    [34] M. Guo, H. B. He, K. Yi, S. Y. Shao, G. X. Hu, J. D. Shao. Optical characteristics of ultrathin amorphous Ge films. Chin. Opt. Lett., 18, 103101(2020).

    Data from CrossRef

    [1] Yanhua Guan, Li Yan, Hai Liu, Ting Xu, Jinghuan Chen, Jikun Xu, Lin Dai, Chuanling Si.

    [1] Yanhua Guan, Li Yan, Hai Liu, Ting Xu, Jinghuan Chen, Jikun Xu, Lin Dai, Chuanling Si.

    [1] Yanhua Guan, Li Yan, Hai Liu, Ting Xu, Jinghuan Chen, Jikun Xu, Lin Dai, Chuanling Si.

    [1] Yanhua Guan, Li Yan, Hai Liu, Ting Xu, Jinghuan Chen, Jikun Xu, Lin Dai, Chuanling Si.

    Lulin Wei, Jie Li, Haohao Wang, Shuhong Nie, Wenming Su, Dafang Huang, Mingwei Zhu. Ultra-fast and low-cost fabrication of transparent paper[J]. Chinese Optics Letters, 2021, 19(12): 121601
    Download Citation