• Opto-Electronic Engineering
  • Vol. 51, Issue 5, 240034 (2024)
Hongmin Zhang*, Dingding Yan, and Qianqian Tian
Author Affiliations
  • School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
  • show less
    DOI: 10.12086/oee.2024.240034 Cite this Article
    Hongmin Zhang, Dingding Yan, Qianqian Tian. Improved spatio-temporal graph convolutional networks for video anomaly detection[J]. Opto-Electronic Engineering, 2024, 51(5): 240034 Copy Citation Text show less
    References

    [1] Y L Gong, X X Zhang, S Chen. Survey on deep learning approach for video anomaly detection. Data Commun, 45-49(2023).

    [2] X G Wang, Y L Yan, P Tang et al. Revisiting multiple instance neural networks. Pattern Recognit, 74, 15-24(2018).

    [3] Z H Zhou, Y Y Sun, Y F Li. Multi-instance learning by treating instances as non-I. I. D. samples, 1249-1256(2009). https://doi.org/10.1145/1553374.1553534

    [4] W Cheng, Z B Chen, Q Q Li et al. Multiple object tracking with aligned spatial-temporal feature. Opto-Electron Eng, 50, 230009(2023).

    [5] J Li, Y Liu, L Zou. A dynamic graph convolutional network based on spatial-temporal modeling. Acta Sci Nat Univ Pekins, 57, 605-613(2021).

    [6] J Lv, Z Y Wang, H C Liang. Boundary attention assisted dynamic graph convolution for retinal vascular segmentation. Opto-Electron Eng, 50, 220116(2023).

    [7] W Sultani, C Chen, M Shah. Real-world anomaly detection in surveillance videos, 6479-6488(2018). https://doi.org/10.1109/CVPR.2018.00678

    [8] J G Zhang, L Y Qing, J Miao. Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection, 4030-4034(2019). https://doi.org/10.1109/ICIP.2019.8803657

    [9] S Li, F Liu, L C Jiao. Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection, 1395-1403(2022). https://doi.org/10.1609/aaai.v36i2.20028

    [10] W J Liang, J M Zhang, Y Z Zhan. Weakly supervised video anomaly detection based on spatial–temporal feature fusion enhancement. Signal, Image Video Process, 18, 1111-1118(2024).

    [11] T N Kipf, M Welling. Semi-supervised classification with graph convolutional networks(2017).

    [12] H Zhou, Y Z Zhan, Q R Mao. Video anomaly detection based on space-time fusion graph network learning. J Comput Res Dev, 58, 48-59(2021).

    [13] D Purwanto, Y T Chen, W H Fang. Dance with self-attention: a new look of conditional random fields on anomaly detection in videos, 173-183(2021). https://doi.org/10.1109/ICCV48922.2021.00024

    [14] H Y Mu, R Z Sun, M Wang et al. Spatio-temporal graph-based CNNs for anomaly detection in weakly-labeled videos. Inf Process Manage, 59, 102983(2022).

    [15] M T Liu, X R Li, Y G Liu et al. Weakly supervised anomaly detection with multi-level contextual modeling. Multimedia Syst, 29, 2153-2164(2023).

    [16] K Cheng, X H Zeng, Y Liu et al. Spatial-temporal graph convolutional network boosted flow-frame prediction for video anomaly detection, 1-5(2023). https://doi.org/10.1109/ICASSP49357.2023.10095170

    [17] X B Li, W Wang, Q Y Li et al. Spatial-temporal graph-guided global attention network for video-based person re-identification. Mach Vision Appl, 35, 8(2024).

    [18] B Y Wan, Y M Fang, X Xia et al. Weakly supervised video anomaly detection via center-guided discriminative learning, 1-6(2020). https://doi.org/10.1109/ICME46284.2020.9102722

    [19] J C Feng, F T Hong, W S Zheng. MIST: multiple instance self-training framework for video anomaly detection, 14004-14013(2021). https://doi.org/10.1109/CVPR46437.2021.01379

    [20] J D Lafferty, A McCallum, F C N Pereira. Conditional random fields: probabilistic models for segmenting and labeling sequence data, 282-289(2001).

    [21] H C Gao, J Pei, H Huang. Conditional random field enhanced graph convolutional neural networks, 276-284(2019). https://doi.org/10.1145/3292500.3330888

    [22] P Krähenbühl, V Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials, 109-117(2011).

    [23] J W Zhang, X L Zhang, Z Q Zhu et al. Efficient combination graph model based on conditional random field for online multi-object tracking. Complex Intell Syst, 9, 3261-3276(2023).

    [24] D Y Chen, P T Wang, L Y Yue et al. Anomaly detection in surveillance video based on bidirectional prediction. Image Vision Comput, 98, 103915(2020).

    [25] C W Lu, J P Shi, J Y Jia. Abnormal event detection at 150 FPS in MATLAB, 2720-2727(2013). https://doi.org/10.1109/ICCV.2013.338

    [26] R Rodrigues, N Bhargava, R Velmurugan et al. Multi-timescale trajectory prediction for abnormal human activity detection, 2615-2623(2020). https://doi.org/10.1109/WACV45572.2020.9093633

    [27] J X Zhong, N N Li, W J Kong et al. Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection, 1237-1246(2019). https://doi.org/10.1109/CVPR.2019.00133

    [28] M Hasan, J Choi, J Neumann et al. Learning temporal regularity in video sequences, 733-742(2016). https://doi.org/10.1109/CVPR.2016.86

    [29] D Gong, L Q Liu, V Le et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection, 1705-1714(2019). https://doi.org/10.1109/ICCV.2019.00179

    [30] G Yu, S Q Wang, Z P Cai et al. Cloze test helps: effective video anomaly detection via learning to complete video events, 583-591(2020). https://doi.org/10.1145/3394171.3413973

    [31] N Taghinezhad, M Yazdi. A new unsupervised video anomaly detection using multi-scale feature memorization and multipath temporal information prediction. IEEE Access, 11, 9295-9310(2023).

    [32] Y Tian, G S Pang, Y H Chen et al. Weakly-supervised video anomaly detection with robust temporal feature magnitude learning, 4955-4966(2021). https://doi.org/10.1109/ICCV48922.2021.00493

    [33] H Y Chen, X Mei, Z Y Ma et al. Spatial–temporal graph attention network for video anomaly detection. Image Vision Comput, 131, 104629(2023).

    [34] L Wang, J W Tian, S P Zhou et al. Memory-augmented appearance-motion network for video anomaly detection. Pattern Recognit, 138, 109335(2023).

    [35] A O Tur, N Dall’Asen, C Beyan et al. Exploring diffusion models for unsupervised video anomaly detection, 2540-2544(2023). https://doi.org/10.1109/ICIP49359.2023.10222594

    [36] A Acsintoae, A Florescu, M I Georgescu et al. UBnormal: new benchmark for supervised open-set video anomaly detection, 20111-20121(2022). https://doi.org/10.1109/CVPR52688.2022.01951

    [37] X L Zeng, Y L Jiang, W R Ding et al. A hierarchical spatio-temporal graph convolutional neural network for anomaly detection in videos. IEEE Trans Circuits Syst Video Technol, 33, 200-212(2023).

    [38] J Li, Q W Huang, Y J Du et al. Variational abnormal behavior detection with motion consistency. IEEE Trans Image Process, 31, 275-286(2022).

    [39] C Q Cao, Y Lu, P Wang et al. A new comprehensive benchmark for semi-supervised video anomaly detection and anticipation, 20392-20401(2023). https://doi.org/10.1109/CVPR52729.2023.01953

    [40] S Majhi, R Dai, Q Kong et al. Human-Scene Network: a novel baseline with self-rectifying loss for weakly supervised video anomaly detection. Comput Vis Image Underst, 241, 103955(2024).

    [41] A Markovitz, G Sharir, I Friedman et al. Graph embedded pose clustering for anomaly detection, 10536-10544(2020). https://doi.org/10.1109/CVPR42600.2020.01055

    Hongmin Zhang, Dingding Yan, Qianqian Tian. Improved spatio-temporal graph convolutional networks for video anomaly detection[J]. Opto-Electronic Engineering, 2024, 51(5): 240034
    Download Citation