• Opto-Electronic Engineering
  • Vol. 51, Issue 5, 240034 (2024)
Hongmin Zhang*, Dingding Yan, and Qianqian Tian
Author Affiliations
  • School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
  • show less
    DOI: 10.12086/oee.2024.240034 Cite this Article
    Hongmin Zhang, Dingding Yan, Qianqian Tian. Improved spatio-temporal graph convolutional networks for video anomaly detection[J]. Opto-Electronic Engineering, 2024, 51(5): 240034 Copy Citation Text show less
    Improved spatio-temporal graph convolutional network model framework
    Fig. 1. Improved spatio-temporal graph convolutional network model framework
    Comparison between GCN module and CRF-GCN module. (a) GCN module; (b) CRF-GCN module
    Fig. 2. Comparison between GCN module and CRF-GCN module. (a) GCN module; (b) CRF-GCN module
    Flowchart of mean-field inference for CRF-GCN
    Fig. 3. Flowchart of mean-field inference for CRF-GCN
    Test results of UCSD Ped2 dataset. (a) Test003; (b) Test012
    Fig. 4. Test results of UCSD Ped2 dataset. (a) Test003; (b) Test012
    Test results of ShanghaiTech dataset. (a) 04_0004; (b) 12_0173
    Fig. 5. Test results of ShanghaiTech dataset. (a) 04_0004; (b) 12_0173
    Test results of IITB-Corridor dataset. (a) Test000228; (b) Train000139 (Normal)
    Fig. 6. Test results of IITB-Corridor dataset. (a) Test000228; (b) Train000139 (Normal)
    Noised experiments. (a) AUC loss for training with noise-added data; (b) ACC loss for training with noise-added
    Fig. 7. Noised experiments. (a) AUC loss for training with noise-added data; (b) ACC loss for training with noise-added
    数据集帧数年份标注分辨率异常类型
    UCSD Ped245602010Frame-level360×240骑自行车、小型车辆
    ShanghaiTech3173982016Frame-level480×856骑自行车、逃票、打架
    IITB-Corridor4835662020Frame-level1920×1080抗议、打斗、追逐等
    Table 1. UCSD Ped2, ShanghaiTech and IITB-Corridor datasets
    监督方式对比方法特征提取方式AUC/%准确率/%
    无监督方式Hasan的方法[28]-90.089.5
    Gong的方法[29]-94.1-
    Yu的方法[30]-97.395.6
    Taghinezhad的方法[31]Encoder97.6-
    弱监督方式GCN-Anomaly[27]TSN93.290.3
    Sultani的方法[7]I3D92.3-
    RTFM[32]TSN96.5-
    Chen的方法[33]C3D97.496.1
    Wang的方法[34]Encoder97.793.4
    本文方法C3D97.796.5
    Table 2. Comparison results of different methods on UCSD Ped2 dataset
    监督方式对比方法特征提取方式AUC/%准确率/%
    无监督方式Hasan的方法[28]-60.860.1
    Gong的方法[29]-71.2-
    Yu的方法[30]-74.472.6
    Tur的方法[35]3D-ResNet1876.1-
    弱监督方式GCN-Anomaly[27]TSN84.482.6
    Sultani的方法[7]I3D86.3-
    Zhou的方法[12]I3D89.8-
    Acsintoae的方法[36]-83.786.1
    Wang的方法[34]Encoder71.382.6
    本文方法C3D90.488.6
    Table 3. Comparison results of different methods on ShanghaiTech dataset
    监督方式对比方法特征提取方式AUC/%
    无监督方式Zeng的方法[37]-73.9
    弱监督方式Li的方法[38]C3D72.2
    Cao的方法[39CVAE73.6
    Royston的方法[26]I3D67.1
    Majhi的方法[40]I3D84.1
    本文方法C3D86.0
    Table 4. Comparison results of different methods on IITB-Corridor dataset
    分类对比方法MACs/GParams/M
    基于其他框架的方法Sultani的方法[7]154.2263.33
    Feng的方法[19]156.8634.75
    基于图卷积的方法GCN-Anomaly[27]154.2263.38
    Chen的方法[33]154.2363.90
    本文方法109.1419.90
    Table 5. Comparison results of different methods on complexity
    时间依赖图空间相似图图融合方式CRFAUC/%准确率/%
    -96.696.2
    -97.196.1
    平均融合[29]89.286.9
    自适应时空融合96.194.2
    自适应时空融合97.796.5
    Table 6. Results of ablation experiments
    Hongmin Zhang, Dingding Yan, Qianqian Tian. Improved spatio-temporal graph convolutional networks for video anomaly detection[J]. Opto-Electronic Engineering, 2024, 51(5): 240034
    Download Citation