[1] G. E. Hoefler, Y. Zhou, M. Anagnosti. Foundry development of system-on-chip InP-based photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 6100317(2019).
[2] T. Komljenovic, M. Davenport, J. Hulme. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol., 34, 20-35(2016).
[3] L. M. Augustin, R. Santos, E. den Haan. InP-based generic foundry platform for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 24, 6100210(2018).
[4] C. Xiang, W. Jin, J. E. Bowers. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics Res., 10, A82-A96(2022).
[5] A. Rahim, T. Spuesens, R. Baets. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE, 106, 2313-2330(2018).
[6] A. Abbasi, C. Spatharakis, G. Kanakis. High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser. J. Lightwave Technol., 34, 1683-1687(2016).
[7] T. Shimizu, N. Hatori, M. Okano. Multichannel and high-density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for interchip optical interconnection. Photonics Res., 2, A19-A24(2014).
[8] A. W. Fang, H. Park, O. Cohen. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express, 14, 9203-9210(2006).
[9] R. Helkey, A. A. M. Saleh, J. Buckwalter. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 25, 8300215(2019).
[10] F. Kish, V. Lal, P. Evans. System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 24, 6100120(2018).
[11] K. A. Mckinzie, C. Wang, A. A. Noman. InP high power monolithically integrated widely tunable laser and SOA array for hybrid integration. Opt. Express, 29, 3490-3502(2021).
[12] S. Arafin, L. A. Coldren. Advanced InP photonic integrated circuits for communication and sensing. IEEE J. Sel. Top. Quantum Electron., 24, 6100612(2018).
[13] A. Hänsel, M. J. R. Heck. Opportunities for photonic integrated circuits in optical gas sensors. J. Phys. Photonics, 2, 012002(2020).
[14] B. J. Isaac, B. Song, S. Pinna. Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR. IEEE J. Sel. Top. Quantum Electron., 25, 8000107(2019).
[15] F. M. Soares, M. Baier, T. Gaertner. InP-based foundry PICs for optical interconnects. Appl. Sci., 9, 1588(2019).
[16] B. J. Shastri, A. N. Tait, T. Ferreira de Lima. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).
[17] B. Bai, Q. Yang, H. Shu. Microcomb-based integrated photonic processing unit. Nat. Commun., 14, 66(2023).
[18] K. Iga. Vertical-cavity surface-emitting laser: its conception and evolution. Jpn. J. Appl. Phys., 47, 1-10(2008).
[19] A. Larsson. Advances in VCSELs for communication and sensing. IEEE J. Sel. Top. Quantum Electron., 17, 1552-1567(2011).
[20] A. Liu, P. Wolf, J. A. Lott. Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Res., 7, 121-136(2019).
[21] R. Michalzik. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers(2013).
[22] G. C. Park, W. Xue, A. Taghizadeh. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser Photonics Rev., 9, L11-L15(2015).
[23] J. Ferrara, W. Yang, L. Zhu. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Opt. Express, 23, 2512-2523(2015).
[24] J. Goyvaerts, A. Grabowski, J. Gustavsson. Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica, 8, 1573-1580(2021).
[25] H. Lu, J. S. Lee, Y. Zhao. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit. Opt. Express, 24, 16258-16266(2016).
[26] Y. Yang, G. Djogo, M. Haque. Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling. Opt. Express, 25, 5758-5771(2017).
[27] Z. Ruan, Y. Zhu, P. Chen. Efficient hybrid integration of long-wavelength VCSELs on silicon photonic circuits. J. Lightwave Technol., 38, 5100-5106(2020).
[28] Z. Chen, A. Sludds, R. Davis. Deep learning with coherent VCSEL neural networks. Nat. Photonics, 17, 723-730(2023).
[29] M. Gu, Y. Dong, H. Yu. Perspective on 3D vertically-integrated photonic neural networks based on VCSEL arrays. Nanophotonics, 12, 827-832(2023).
[30] W.-C. Hsu, C.-H. Chang, Y.-H. Hong. Compact structured light generation based on meta-hologram PCSEL integration. Discover Nano, 18, 87(2023).
[31] A. Paraskevopoulos, H. J. Hensel, W. D. Molzow. Ultra-high-bandwidth (> 35 GHz) electrooptically-modulated VCSEL. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, PDP22(2006).
[32] T. D. Germann, W. Hofmann, A. M. Nadtochiy. Electro-optical resonance modulation of vertical-cavity surface-emitting lasers. Opt. Express, 20, 5099-5107(2012).
[33] M. Grabherr, P. Gerlach, R. King. Integrated photodiodes complement the VCSEL platform. Proc. SPIE, 7229, 72290E(2009).
[34] A. M. Kasten, A. V. Giannopoulos, C. Long. Fabrication and characterization of individually addressable vertical-cavity surface-emitting laser arrays and integrated VCSEL/PIN detector arrays. Proc. SPIE, 6484, 64840C(2007).
[35] A. Kern, A. Al-Samaneh, D. Wahl. Monolithic VCSEL-PIN photodiode integration for bidirectional optical data transmission. IEEE J. Sel. Top. Quantum Electron., 19, 6100313(2013).
[36] H. Li, D. B. Phillips, X. Wang. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica, 2, 547-552(2015).
[37] Q. Li, V. Raimbault, P.-F. Calmon. Direct 3D-printing of microlens on single mode polarization-stable VCSEL chip for miniaturized optical spectroscopy. J. Opt. Microsyst., 3, 033501(2023).
[38] H. Martinsson, J. Bengtsson, M. Ghisoni. Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping. IEEE Photonics Technol. Lett., 11, 503-505(1999).
[39] Y.-Y. Xie, P.-N. Ni, Q.-H. Wang. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol., 15, 125-130(2020).
[40] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics, 1, 119-122(2007).
[41] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. A nanoelectromechanical tunable laser. Nat. Photonics, 2, 180-184(2008).
[42] X. Jia, J. Kapraun, J. Wang. Metasurface reflector enables room-temperature circularly polarized emission from VCSEL. Optica, 10, 1093-1099(2023).
[43] J. Zhang, C. Hao, W. Zheng. Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings. Photonics Res., 10, 1170-1176(2022).
[44] E. Haglund, J. S. Gustavsson, J. Bengtsson. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings. Opt. Express, 24, 1999-2005(2016).
[45] M. Gębski, J. A. Lott, T. Czyszanowski. Electrically injected VCSEL with a composite DBR and MHCG reflector. Opt. Express, 27, 7139-7146(2019).
[46] T.-C. Chang, E. Hashemi, K.-B. Hong. Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors. ACS Photonics, 7, 861-866(2020).
[47] S. Inoue, J. Kashino, A. Matsutani. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Jpn. J. Appl. Phys., 53, 090306(2014).
[48] C. Chase, Y. Zhou, C. J. Chang-Hasnain. Size effect of high contrast gratings in VCSELs. Opt. Express, 17, 24002-24007(2009).
[49] T. Ansbæk, I.-S. Chung, E. S. Semenova. Resonant MEMS tunable VCSEL. IEEE J. Sel. Top. Quantum Electron., 19, 1702306(2013).
[50] P. Qiao, K. T. Cook, K. Li. Wavelength-swept VCSELs. IEEE J. Sel. Top. Quantum Electron., 23, 1700516(2017).
[51] M. Wang, W. Zheng, A. Liu. Tunable MEMS-VCSEL with high-contrast grating. 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM), 1-3(2023).
[52] D. D. John, C. B. Burgner, B. Potsaid. Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging. J. Lightwave Technol., 33, 3461-3468(2015).
[53] B. Johnson, J. Jabbour, M. Malonson. Linewidth considerations for MEMS tunable VCSEL LiDAR. Opt. Express, 30, 17230-17242(2022).
[54] S. Ni, X. Wei, R. Ng. High-speed and widefield handheld swept-source OCT angiography with a VCSEL light source. Biomed. Opt. Express, 12, 3553-3570(2021).
[55] F. Sugihwo, M. C. Larson, J. S. Harris. Micromachined widely tunable vertical cavity laser diodes. J. Microelectromech. Syst., 7, 48-55(1998).
[56] M. Lackner, M. Schwarzott, F. Winter. CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at ∼1.55 μm. Opt. Lett., 31, 3170-3172(2006).
[57] B. Kögel, P. Debernardi, P. Westbergh. Integrated MEMS-tunable VCSELs using a self-aligned reflow process. IEEE J. Quantum Electron., 48, 144-152(2012).
[58] F. Koyama, M. Nakahama. Micromachined vertical cavity surface emitting lasers—athermalization, tuning, and multiwavelength integration. IEEE J. Sel. Top. Quantum Electron., 21, 1700310(2015).
[59] S. Paul, M. T. Haidar, J. Cesar. Far-field, linewidth and thermal characteristics of a high-speed 1550-nm MEMS tunable VCSEL. Opt. Express, 24, 13142-13156(2016).
[60] V. J. Kitsmiller, M. M. Dummer, K. Johnson. Frequency domain diffuse optical spectroscopy with a near-infrared tunable vertical cavity surface emitting laser. Opt. Express, 26, 21033-21043(2018).
[61] M. Okano, C. Chong. Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source. Opt. Express, 28, 23898-23915(2020).
[62] C. Kurokawa, Y. Suzuki, Y. Kitagawa. MEMS-VCSEL design method using a diffraction loss map. OSA Contin., 4, 3129-3138(2021).
[63] J. Feldmann, N. Youngblood, M. Karpov. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).
[64] X. Xu, M. Tan, B. Corcoran. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).
[65] X. Wang, P. Xie, B. Chen. Chip-based high-dimensional optical neural network. Nano-Micro Lett., 14, 221(2022).
[66] J. Wu, X. Lin, Y. Guo. Analog optical computing for artificial intelligence. Engineering, 10, 133-145(2022).
[67] H. Zhou, J. Dong, J. Cheng. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl., 11, 30(2022).
[68] B. Bai, Y. Li, Y. Luo. All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci. Appl., 12, 69(2023).
[69] J. Cheng, Y. Xie, Y. Liu. Human emotion recognition with a microcomb-enabled integrated optical neural network. Nanophotonics, 12, 3883-3894(2023).
[70] H. Moench, S. Gronenborn, X. Gu. VCSELs in short-pulse operation for time-of-flight applications. Proc. SPIE, 10938, 109380E(2019).
[71] L. A. Graham, H. Chen, J. Cruel. High-power VCSEL arrays for consumer electronics. Proc. SPIE, 9381, 93810A(2015).
[72] M. Agustin, N. Ledentsov, J.-R. Kropp. 50 Gb/s NRZ and 4-PAM data transmission over OM5 fiber in the SWDM wavelength range. Proc. SPIE, 10552, 1055202(2018).
[73] G. Larisch, R. Rosales, D. Bimberg. Energy-efficient 50+ Gb/s VCSELs for 200+ Gb/s optical interconnects. IEEE J. Sel. Top. Quantum Electron., 25, 1701105(2019).
[74] T. N. Huynh, F. Doany, D. M. Kuchta. 4× 50 Gb/s NRZ shortwave-wavelength division multiplexing VCSEL link over 50 m multimode fiber. Optical Fiber Communication Conference, Tu2B.5(2017).
[75] M. A. Afromowitz. Refractive index of Ga1−xAlxAs. Solid State Commun., 15, 59-63(1974).
[76] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. Nano electro-mechanical optoelectronic tunable VCSEL. Opt. Express, 15, 1222-1227(2007).
[77] K. Li, C. Chase, Y. Rao. Widely tunable 1060-nm high-contrast grating VCSEL. Compound Semiconductor Week (CSW), MoC4-2(2016).
[78] B. Vest, B. Fix, J. Jaeck. Competition between sub-bandgap linear detection and degenerate two-photon absorption in gallium arsenide photodiodes. J. Eur. Opt. Soc. Rapid Publ., 12, 26(2016).
[79] F. Guo, B. Yang, Y. Yuan. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol., 7, 798-802(2012).
[80] M. A. Haase, M. J. Hafich, G. Y. Robinson. Internal photoemission and energy-band offsets in GaAs-GaInP p-I-N heterojunction photodiodes. Appl. Phys. Lett., 58, 616-618(1991).
[81] J.-B. You, H. Kwon, J. Kim. Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides. Opt. Express, 25, 4284-4297(2017).
[82] B. Vest, E. Lucas, J. Jaeck. Silicon sub-bandgap photon linear detection in two-photon experiments: a photo-assisted Shockley-Read-Hall mechanism. Appl. Phys. Lett., 102, 031105(2013).
[83] M. Guan, C. J. Chang-Hasnain. Resonant-cavity-enhanced p-i-n photodetector using a high-contrast-grating for 940 nm. Opt. Express, 30, 9298-9306(2022).
[84] W. Yang, S. A. Gerke, L. Zhu. Long-wavelength tunable detector using high-contrast grating. IEEE J. Sel. Top. Quantum Electron., 20, 178-185(2014).
[85] A. Liu, W. Hofmann, D. Bimberg. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Opt. Express, 22, 11804-11811(2014).
[86] K. Li, Y. Rao, C. Chase. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica, 5, 10-13(2018).
[87] E. W. Van Stryland, H. Vanherzeele, M. A. Woodall. Two photon absorption, nonlinear refraction, and optical limiting in semiconductors. Opt. Eng., 24, 613-623(1985).