• Infrared and Laser Engineering
  • Vol. 51, Issue 4, 20210291 (2022)
Li Min1, Sijian Cao1, Huaici Zhao2、*, and Pengfei Liu2
Author Affiliations
  • 1School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • 2Key Laboratory of Optical-Electronics Information Processing, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China
  • show less
    DOI: 10.3788/IRLA20210291 Cite this Article
    Li Min, Sijian Cao, Huaici Zhao, Pengfei Liu. Infrared and visible image fusion using improved generative adversarial networks[J]. Infrared and Laser Engineering, 2022, 51(4): 20210291 Copy Citation Text show less
    References

    [1] Shen Ying, Huang Chunhong, Huang Feng, et al. Infrared visible image fusion: review of key technologies [J]. Infrared Laser Engineering, 2021, 50(9): 20200467. (in Chinese)

    [2] Yali Shen. RGBT dual-model Siamese tracking network with feature fusion. Infrared and Laser Engineering, 50, 20200459(2021).

    [3] J Chen, K Wu, Z Cheng, et al. A saliency-based multiscale approach for infrared and visible image fusion. Signal Processing, 182, 107936(2021).

    [4] Huan Kewei, Li Xiangyang, Cao Yutong, et al. Infrared visible image fusion with convolutional neural wk NSST [J]. Infrared Laser Engineering, 2022, 51(3): 20210139. (in Chinese)

    [5] An W B, Wang H M. Infrared visible image fusion with supervised convolutional neural wk [J]. OptikInternational Journal f Light Electron Optics, 2020, 219(17): 165120.

    [6] Y Pan, D Pi, I A Khan, et al. DenseNetFuse: A study of deep unsupervised DenseNet to infrared and visual image fusion. Journal of Ambient Intelligence and Humanized Computing, 02820(2021).

    [7] I J Goodfellow, J Pouget-Abadie, M Mirza, et al. Generative adversarial networks. Advances in Neural Information Processing Systems, 3, 2672-2680(2014).

    [8] J Ma, Y Wei, P Liang, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion. Information Fusion, 48, 11-26(2019).

    [9] J Ma, H Xu, J Jiang, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Transactions on Image Processing, 29, 4980-4995(2020).

    [10] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN [J]. arXiv, 2017: 1701. 07875v1.

    [11] Miyato T, Kataoka T, Koyama M, et al. Spectral nmalization f generative adversarial wks [C]International Conference on Learning Representations, 2018.

    [12] Jégou S, Drozdzal M, Vazquez D, et al. The one hundred layers tiramisu: Fully convolutional denses f semantic segmentation [C]2017 IEEE Conference on Computer Vision Pattern Recognition Wkshops (CVPRW), IEEE, 2016.

    [13] X Li, You A, Zhu Z, et al. Semantic flow f fast accurate scene parsing [J]. arXiv, 2020: 2002.10120.

    [14] Karen S, rew Z. Very deep convolutional wks f largescale image recognition[J]. arXiv, 2014: 1409.1556.

    [15] Qinglei Du, Han Xu, Yongoing Ma, et al. Fusing infrared and visible images of different resolutions via total variation model. Sensors, 18, 3827(2018).

    [16] Li H, Wu X J, Kittler J. Infrared visible image fusion using a deep learning framewk[J]. arXiv, 2018: 1804.06992.

    [17] Zhao Z, Xu S, Zhang C, et al. DIDFuse: Deep image decomposition f infrared visible image fusion [C]TwentyNinth International Joint Conference on Artificial Intelligence Seventeenth Pacific Rim International Conference on Artificial Intelligence, 2020.

    Li Min, Sijian Cao, Huaici Zhao, Pengfei Liu. Infrared and visible image fusion using improved generative adversarial networks[J]. Infrared and Laser Engineering, 2022, 51(4): 20210291
    Download Citation