• Matter and Radiation at Extremes
  • Vol. 6, Issue 4, 044401 (2021)
H. Huang*, Z. M. Zhang, B. Zhang, W. Hong, S. K. He, L. B. Meng, W. Qi, B. Cui, and W. M. Zhou
Author Affiliations
  • Science and Technology on Plasma Physics Laboratory, Mianyang 621900, China
  • show less
    DOI: 10.1063/5.0029163 Cite this Article
    H. Huang, Z. M. Zhang, B. Zhang, W. Hong, S. K. He, L. B. Meng, W. Qi, B. Cui, W. M. Zhou. Investigation of magnetic inhibition effect on ion acceleration at high laser intensities[J]. Matter and Radiation at Extremes, 2021, 6(4): 044401 Copy Citation Text show less
    References

    [1] A.Yogo, M.Nishikino, K.Sato et al. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett., 94, 181502(2009).

    [2] M.Baumann, E.Beyreuther, K.Zeil et al. Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses. Appl. Phys. B, 110, 437-444(2013).

    [3] H.Chen, S. C.Wilks, J. D.Bonlie et al. Making relativistic positrons using ultraintense short pulse laser. Phys. Plasmas, 16, 122702(2009).

    [4] I.Alber, V.Bagnoud, M.Roth et al. Proton acceleration experiments and warm dense matter research using high power lasers. Plasma Phys. Controlled Fusion, 51, 124039(2009).

    [5] T. E.Cowan, M.Roth, M. H.Key et al. Fast ignition by intense laser-acceleated proton beams. Phys. Rev. Lett., 86, 436-439(2001).

    [6] J. C.Fernández, J. J.Honrubia, B. J.ALbright et al. Progress and prospects of ion-driven fast ignition. Nucl. Fusion, 49, 065004(2009).

    [7] J. C.Fernández, F. N.Beg, B. J.ALbright et al. Fast ignition with laser-driven proton and ion beams. Nucl. Fusion, 54, 054006(2014).

    [8] M.Borghesi, A.Macchi, M.Passoni. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751-793(2013).

    [9] B.Qiao, M.Zepf, M.Borghesi et al. Stable GeV ion-beam acceleration from thin foils by circularly polorized laser pulse. Phys. Rev. Lett., 102, 145002(2009).

    [10] G.Shvets, T.-P.Yu, A.Pukhov et al. Stable laser-driven proton beam acceleration from a two-ion species ultra thin foil. Phys. Rev. Lett., 105, 065002(2010).

    [11] A. B.Langdon, S. C.Wilks, T. E.Cowan et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasma, 8, 542(2001).

    [12] B. J.Albright, J.Cobble, B. M.Hegelich et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature, 439, 441-444(2006).

    [13] F.Wagner, C.Brabetz, O.Deppert et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002(2016).

    [14] A.Higginson, R. J.Gray, M.King et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun., 9, 724(2018).

    [15] M.Nakatsutsumi, Y.Sentoku, A.Korzhimanov et al. Self-generated surface magnetic fields inhibit laserdriven sheath acceleration of high-energy protons. Nat. Commun., 9, 280(2018).

    [16] M.Nakatsutsumi, A.Kon, S.Buffechoux et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314-2316(2010).

    [17] C.McGuffey, W.Schumaker, N.Nakanii et al. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions. Phys. Rev. Lett., 110, 015003(2013).

    [18] P.Antici, S. N.Chen, B.Albertazzi et al. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation. Phys. Plasma, 22, 123108(2015).

    [19] Z. M.Zhang, Z. M.Sheng, X. T.He et al. Hundreds MeV monoenergetic proton bunch from interaction of 1020−21 W/cm2 circularly polarized laser pulse with tailored complex target. Appl. Phys. Lett., 100, 134103(2012).

    [20] P.Mora. Plasma expansion into a vacuum. Phys. Rev. Lett., 90, 185002(2003).

    [21] P.Antici, J.Fuchs, E.d’Humières et al. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys., 2, 48-54(2006).

    [22] M. G.Haines. Saturation mechanisms for the generated magnetic field in nonuniform laser-matter irradiation. Phys. Rev. Lett., 78, 254-257(1997).

    [23] F.Califano, F.Pegoraro, S. V.Bulanov. Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas. Phys. Rev. E, 56, 963-969(1997).

    [24] T.Grismayer, P.Antici, L.Gremillet et al. Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets. Phys. Plasma, 20, 123116-1-123116-8(2013).

    [25] M.Passoni, M.Lontano. One-dimensional model of the electrostatic ion acceleration in the ultraintense laser–solid interaction. Laser Particle Beams, 22, 163-169(2004).

    [26] M.Passoni, M.Lontano. Theory of light-ion acceleration driven by a strong charge separation. Phys. Rev. Lett., 101, 115001(2008).

    [27] M.Passoni, L.Bertagna, A.Zani. Energetic ions from next generation ultraintense ultrashort lasers: Scaling laws for target normal sheath acceleration. Nucl. Instrum. Methods Phys. Res., Sect. A, 620, 46-50(2010).

    [28] P.Mora, R.Pellat. Self-similar expansion of a plasma into a vacuum. Phys. Flusids, 22, 2300(1979).

    [29] J. E.Crow, P. L.Auer, J. E.Allen. Expansion of a plasma into a vacuum. J. Plasma Phys., 14, 65-76(1975).

    [30] Y.Katoh, Y.Omura, D.Summers. Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res., 113, A04223(2008).

    [31] E.d’Humières, A.Debayle, J. J.Honrubia et al. Divergence of laser-driven relativistic electron beams. Phys. Rev. E, 82, 036405(2010).

    [32] M.Mcmahon, D. W.Schumacher, V.Ovchinnikov et al. Effects of preplasma scale length and laser intensity on the divergence of laser generated hot electrons. Phys. Rev. Lett., 110, 065007(2013).

    [33] M.Borghesi, A.Bigongiari, S.Kar et al. Laser-driven proton acceleration: Source optimization and radiographic applications. Plasma Phys. Controlled Fusion, 50, 124040(2008).

    [34] S. V.Bulanov, J.Fuchs, M.Borghesi et al. Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol., 49, 412-439(2006).

    [35] S. C.Wilks, M.Tabak, W. L.Kruer et al. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383-1386(1992).

    [36] Z.Guo, L. H.Yu, J. Y.Wang et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: Sapphire chirped pulse amplification laser system. Opt. Express, 26, 026776(2018).

    [37] J. W.Yoon, J.Shin, C.Jeon et al. Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express, 27, 020412(2019).

    [38] X. M.Zeng, Y. L.Zuo, K. N.Zhou et al. Multi-petawatt laser facility fully based on optical parametric chriped pulse amplification. Opt. Lett., 42, 2014(2017).

    H. Huang, Z. M. Zhang, B. Zhang, W. Hong, S. K. He, L. B. Meng, W. Qi, B. Cui, W. M. Zhou. Investigation of magnetic inhibition effect on ion acceleration at high laser intensities[J]. Matter and Radiation at Extremes, 2021, 6(4): 044401
    Download Citation