• Photonics Research
  • Vol. 9, Issue 10, 2104 (2021)
Amged Alquliah1、2, Mohamed Elkabbash3、4、5、*, Jinluo Cheng1、2、6、*, Gopal Verma1、2, Chaudry Sajed Saraj1、2, Wei Li1、2、7、*, and Chunlei Guo3、8、*
Author Affiliations
  • 1GPL, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
  • 4Current address: The Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 5e-mail: melkabba@mit.edu
  • 6e-mail: jlcheng@ciomp.ac.cn
  • 7e-mail: weili1@ciomp.ac.cn
  • 8e-mail: guo@optics.rochester.edu
  • show less
    DOI: 10.1364/PRJ.428577 Cite this Article Set citation alerts
    Amged Alquliah, Mohamed Elkabbash, Jinluo Cheng, Gopal Verma, Chaudry Sajed Saraj, Wei Li, Chunlei Guo. Reconfigurable metasurface-based 1 × 2 waveguide switch[J]. Photonics Research, 2021, 9(10): 2104 Copy Citation Text show less
    References

    [1] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [2] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).

    [3] G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz, D. A. B. Miller, D. Psaltis. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [4] W. Bogaerts, D. Pérez, J. Capmany, D. A. B. Miller, J. Poon, D. Englund, F. Morichetti, A. Melloni. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [5] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [6] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, J. Grollier. Neuromorphic computing with nanoscale spintronic oscillators. Nature, 547, 428-431(2017).

    [7] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [8] A. Blais, S. M. Girvin, W. D. Oliver. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys., 16, 247-256(2020).

    [9] S. Leedumrongwatthanakun, L. Innocenti, H. Defienne, T. Juffmann, A. Ferraro, M. Paternostro, S. Gigan. Programmable linear quantum networks with a multimode fibre. Nat. Photonics, 14, 139-142(2020).

    [10] Q. Ma, L. Chen, H. B. Jing, Q. R. Hong, H. Y. Cui, Y. Liu, L. Li, T. J. Cui. Controllable and programmable nonreciprocity based on detachable digital coding metasurface. Adv. Opt. Mater., 7, 1901285(2019).

    [11] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [12] Y. Wang, W. Li, M. Li, S. Zhao, F. De Ferrari, M. Liscidini, F. G. Omenetto. Biomaterial-based ‘structured opals’ with programmable combination of diffractive optical elements and photonic bandgap effects. Adv. Mater., 31, 1805312(2019).

    [13] Z. Li, J. Zou, H. Zhu, B. T. T. Nguyen, Y. Shi, P. Y. Liu, R. C. Bailey, J. Zhou, H. Wang, Z. Yang, Y. Jin, P. H. Yap, H. Cai, Y. Hao, A. Q. Liu. Biotoxoid photonic sensors with temperature insensitivity using a cascade of ring resonator and Mach–Zehnder interferometer. ACS Sens., 5, 2448-2456(2020).

    [14] P. Xu, J. Zheng, J. K. Doylend, A. Majumdar. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon., 6, 553-557(2019).

    [15] M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, V. Pruneri. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett., 103, 141119(2013).

    [16] M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, W. H. P. Pernice. Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks. Adv. Opt. Mater., 5, 1600346(2017).

    [17] J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, A. Majumdar. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express, 8, 1551-1561(2018).

    [18] Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, J. Hu. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [19] C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, M. Li. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photon., 6, 87-92(2019).

    [20] C. Zhang, M. Zhang, Y. Xie, Y. Shi, R. Kumar, R. R. Panepucci, D. Dai. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photon. Res., 8, 1171-1176(2020).

    [21] T. J. Seok, N. Quack, S. Han, R. S. Muller, M. C. Wu. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64-70(2016).

    [22] T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, M. C. Wu. Silicon photonic wavelength cross-connect with integrated MEMS switching. APL Photon., 4, 100803(2019).

    [23] J. Zheng, S. Zhu, P. Xu, S. Dunham, A. Majumdar. Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters. ACS Appl. Mater. Interfaces, 12, 21827-21836(2020).

    [24] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, M. Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 14, 37-43(2020).

    [25] M. Thomaschewski, V. A. Zenin, C. Wolff, S. I. Bozhevolnyi. Plasmonic monolithic lithium niobate directional coupler switches. Nat. Commun., 11, 748(2020).

    [26] D. Pérez, I. Gasulla, P. Das Mahapatra, J. Capmany. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photon., 12, 709-786(2020).

    [27] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017).

    [28] S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, A. Adibi. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189-1241(2020).

    [29] N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, H. Bhaskaran. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv., 5, eaaw2687(2019).

    [30] D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, S. R. Elliott. Breaking the speed limits of phase-change memory. Science, 336, 1566(2012).

    [31] C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, C. D. Wright. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater., 28, 1704993(2018).

    [32] C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. On-chip photonic memory elements employing phase-change materials. Adv. Mater., 26, 1372-1377(2014).

    [33] Z. Cheng, C. Ríos, N. Youngblood, C. D. Wright, W. H. P. Pernice, H. Bhaskaran. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater., 30, 1802435(2018).

    [34] M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett., 101, 221101(2012).

    [35] H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, W.-P. Huang. Simulations of silicon-on-insulator channel-waveguide electrooptical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer. J. Lightwave Technol., 33, 1805-1813(2015).

    [36] J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, W. H. P. Pernice. Calculating with light using a chip-scale all-optical abacus. Nat. Commun., 8, 1256(2017).

    [37] M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, X. Miao. Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater., 30, 2003419(2020).

    [38] A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, F. Capasso. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287-296(2021).

    [39] Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, N. Yu. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol., 12, 675-683(2017).

    [40] B. Wang, S. Blaize, R. Salas-Montiel. Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics. Nanoscale, 11, 20685-20692(2019).

    [41] A. Alquliah, M. Elkabbash, J. Zhang, J. Cheng, C. Guo. Ultrabroadband, compact, polarization independent and efficient metasurface-based power splitter on lithium niobate waveguides. Opt. Express, 29, 8160-8170(2021).

    [42] C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, M. Lončar. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 8, 2098(2017).

    [43] V. Ginis, M. Piccardo, M. Tamagnone, J. Lu, M. Qiu, S. Kheifets, F. Capasso. Remote structuring of near-field landscapes. Science, 369, 436-440(2020).

    [44] X. Guo, Y. Ding, X. Chen, Y. Duan, X. Ni. Molding free-space light with guided wave–driven metasurfaces. Sci. Adv., 6, eabb4142(2020).

    [45] R. Guo, M. Decker, F. Setzpfandt, X. Gai, D.-Y. Choi, R. Kiselev, A. Chipouline, I. Staude, T. Pertsch, D. N. Neshev, Y. S. Kivshar. High–bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Sci. Adv., 3, e1700007(2017).

    [46] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [47] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [48] O. Tsilipakos, A. C. Tasolamprou, A. Pitilakis, F. Liu, X. Wang, M. S. Mirmoosa, D. C. Tzarouchis, S. Abadal, H. Taghvaee, C. Liaskos, A. Tsioliaridou, J. Georgiou, A. Cabellos-Aparicio, E. Alarcón, S. Ioannidis, A. Pitsillides, I. F. Akyildiz, N. V. Kantartzis, E. N. Economou, C. M. Soukoulis, M. Kafesaki, S. Tretyakov. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers. Adv. Opt. Mater., 8, 2000783(2020).

    [49] F. Ding, Y. Yang, S. I. Bozhevolnyi. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater., 7, 1801709(2019).

    [50] Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N. I. Zheludev. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2016).

    [51] S. G.-C. Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Ríos, H. Bhaskaran, C. D. Wright. A nonvolatile phase-change metamaterial color display. Adv. Opt. Mater., 7, 1801782(2019).

    [52] Z. Zhu, P. G. Evans, R. F. Haglund, J. G. Valentine. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett., 17, 4881-4885(2017).

    [53] C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. G.-C. Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, C. D. Wright. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 7, 476-484(2020).

    [54] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [55] L. Zhang, M. Z. Chen, W. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Cheng, T. J. Cui. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron., 4, 218-227(2021).

    [56] L. Li, Y. Shuang, Q. Ma, H. Li, H. Zhao, M. Wei, C. Liu, C. Hao, C.-W. Qiu, T. J. Cui. Intelligent metasurface imager and recognizer. Light Sci. Appl., 8, 97(2019).

    [57] R.-B. Hwang. Binary meta-hologram for a reconfigurable holographic metamaterial antenna. Sci. Rep., 10, 8586(2020).

    [58] C. Liu, W. M. Yu, Q. Ma, L. Li, T. J. Cui. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network. Photon. Res., 9, B159-B167(2021).

    [59] J. Xiong, S.-T. Wu. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight, 1, 3(2021).

    [60] X. G. Zhang, W. X. Jiang, H. L. Jiang, Q. Wang, H. W. Tian, L. Bai, Z. J. Luo, S. Sun, Y. Luo, C.-W. Qiu, T. J. Cui. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron., 3, 165-171(2020).

    [61] Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, J. Hu. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett., 43, 94-97(2018).

    [62] H. Hu, H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, B. M. A. Rahman. Contra-directional switching enabled by Si-GST grating. Opt. Express, 28, 1574-1584(2020).

    [63] Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, A. Majumdar. Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material. Adv. Opt. Mater., 9, 2002049(2021).

    [64] X. Li, N. Youngblood, Z. Cheng, S. G.-C. Carrillo, E. Gemo, W. H. P. Pernice, C. D. Wright, H. Bhaskaran. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica, 7, 218-225(2020).

    [65] W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, R. E. Simpson. Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater., 29, 1806181(2019).

    [66] K. V. Sreekanth, Q. Ouyang, S. Sreejith, S. Zeng, W. Lishu, E. Ilker, W. Dong, M. ElKabbash, Y. Ting, C. T. Lim, M. Hinczewski, G. Strangi, K.-T. Yong, R. E. Simpson, R. Singh. Phase-change-material-based low-loss visible-frequency hyperbolic metamaterials for ultrasensitive label-free biosensing. Adv. Opt. Mater., 7, 1900081(2019).

    [67] M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, O. L. Muskens. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater., 30, 2002447(2020).

    [68] W. Zhu, R. Yang, G. Geng, Y. Fan, X. Guo, P. Li, Q. Fu, F. Zhang, C. Gu, J. Li. Titanium dioxide metasurface manipulating high-efficiency and broadband photonic spin Hall effect in visible regime. Nanophotonics, 9, 4327-4335(2020).

    [69] M. Wuttig, N. Yamada. Phase-change materials for rewriteable data storage. Nat. Mater., 6, 824-832(2007).

    [70] K. R. Safronov, D. N. Gulkin, I. M. Antropov, K. A. Abrashitova, V. O. Bessonov, A. A. Fedyanin. Multimode interference of Bloch surface electromagnetic waves. ACS Nano, 14, 10428-10437(2020).

    [71] P. Sethi, A. Haldar, S. K. Selvaraja. Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator. Opt. Express, 25, 10196-10203(2017).

    [72] Y. Fu, T. Ye, W. Tang, T. Chu. Efficient adiabatic silicon-on-insulator waveguide taper. Photon. Res., 2, A41-A44(2014).

    [73] J. Zhang, J. Yang, H. Xin, J. Huang, D. Chen, Z. Zhaojian. Ultrashort and efficient adiabatic waveguide taper based on thin flat focusing lenses. Opt. Express, 25, 19894-19903(2017).

    [74] C. Sun, Y. Yu, X. Zhang. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt. Lett., 42, 4913-4916(2017).

    [75] Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su. Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photon., 8, 202-208(2021).

    [76] J. M. Luque-González, R. Halir, J. G. Wangüemert-Pérez, J. de-Oliva-Rubio, J. H. Schmid, P. Cheben, Í. Molina-Fernández, A. Ortega-Moñux. An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials. Laser Photon. Rev., 13, 1900172(2019).

    [77] C. Yao, S. C. Singh, M. ElKabbash, J. Zhang, H. Lu, C. Guo. Quasi-rhombus metasurfaces as multimode interference couplers for controlling the propagation of modes in dielectric-loaded waveguides. Opt. Lett., 44, 1654-1657(2019).

    [78] E. D. Palik. Handbook of Optical Constants of Solids(2012).

    [79] M. Delaney, I. Zeimpekis, D. Lawson, D. Hewak, O. Muskens. A new family of ultra-low loss reversible phase change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater., 30, 2002447(2020).

    [80] M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, P. Genevet. Numerical optimization methods for metasurfaces. Laser Photon. Rev., 14, 1900445(2020).

    [81] K. Koshelev, Y. Kivshar. Dielectric resonant metaphotonics. ACS Photon., 8, 102-112(2021).

    [82] I. Staude, T. Pertsch, Y. S. Kivshar. All-dielectric resonant meta-optics lightens up. ACS Photon., 6, 802-814(2019).

    [83] R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, S. Janz. Waveguide sub-wavelength structures: a review of principles and applications. Laser Photon. Rev., 9, 25-49(2015).

    [84] P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, D. R. Smith. Subwavelength integrated photonics. Nature, 560, 565-572(2018).

    [85] J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, A. Majumdar. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater., 32, 2001218(2020).

    [86] Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, J. Hu. Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett., 118, 210501(2021).

    [87] K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig. Resonant bonding in crystalline phase-change materials. Nat. Mater., 7, 653-658(2008).

    [88] Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H. S. P. Wong, J. Park, M. L. Brongersma. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol., 16, 667-672(2021).

    [89] Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, J. Hu. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).

    [90] T. Akiyama, M. Uno, H. Kitaura, K. Narumi, R. Kojima, K. Nishiuchi, N. Yamada. Rewritable dual-layer phase-change optical disk utilizing a blue-violet laser. Jpn. J. Appl. Phys., 40, 1598-1603(2001).

    [91] W. Zhang, R. Mazzarello, M. Wuttig, E. Ma. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater., 4, 150-168(2019).

    [92] C. R. De Galarreta Fanjul. Reconfigurable phase-change optical metasurfaces: novel design concepts to practicable devices(2020).

    [93] P. Trofimov, A. P. Pushkarev, I. S. Sinev, V. V. Fedorov, S. Bruyère, A. Bolshakov, I. S. Mukhin, S. V. Makarov. Perovskite–gallium phosphide platform for reconfigurable visible-light nanophotonic chip. ACS Nano, 14, 8126-8134(2020).

    [94] B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, M. Lončar. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380-384(2019).

    [95] H. M. Mbonde, H. C. Frankis, J. D. B. Bradley. Enhanced nonlinearity and engineered anomalous dispersion in TeO2-coated Si3N4 waveguides. IEEE Photon. J., 12, 2200210(2020).

    [96] H. El Dirani, L. Youssef, C. Petit-Etienne, S. Kerdiles, P. Grosse, C. Monat, E. Pargon, C. Sciancalepore. Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators. Opt. Express, 27, 30726-30740(2019).

    [97] R. R. Grote, L. C. Bassett. Single-mode optical waveguides on native high-refractive-index substrates. APL Photon., 1, 071302(2016).

    [98] K. Bi, Q. Wang, J. Xu, L. Chen, C. Lan, M. Lei. All-dielectric metamaterial fabrication techniques. Adv. Opt. Mater., 9, 2001474(2021).

    [99] S. Rytov. Electromagnetic properties of a finely stratified medium. J. Exp. Theor. Phys., 2, 466-475(1956).

    Amged Alquliah, Mohamed Elkabbash, Jinluo Cheng, Gopal Verma, Chaudry Sajed Saraj, Wei Li, Chunlei Guo. Reconfigurable metasurface-based 1 × 2 waveguide switch[J]. Photonics Research, 2021, 9(10): 2104
    Download Citation