
- Photonics Research
- Vol. 9, Issue 10, 2104 (2021)
Abstract
1. INTRODUCTION
The advancement of nanofabrication, coupled with the attainment of a high level of complexity in photonic integrated circuits (PICs), triggered tremendous interest toward realizing miniaturized all-optical interconnects that are superior to electronic circuits in terms of bandwidth density, speed, and energy efficiency as well as mitigating the von Neumann data transmission bottleneck [1–3]. Particularly, the reconfigurable control of light propagating in PICs is crucially important for many emerging applications such as programmable PIC [4], neuro-inspired computing [5,6], quantum information processing [7,8], optical communication [9,10], microwave photonics [11], and sensor applications [12,13].
Reconfigurable photonic computing cores are conventionally implemented using waveguide meshes of Mach–Zehnder interferometers (MZIs) where the interference is controlled via two phase shifters that are independently tuned through volatile and weak modulation of the waveguide refractive index commonly using electro-optic or thermo-optic effects [4], leading to devices with a limited tunability, high energy consumption [several milliwatts (mW)], and large footprints [hundreds of micrometers (μm)] [14]. On the other hand, micro-ring resonators (MRRs) [15–20] and micro-electromechanical systems (MEMS) [21,22] offer high modulation depth and a relatively small footprint. Still, they suffer from a narrow operational bandwidth (less than 3 dB) [20], low tolerance to temperature variations and fabrication errors, as well as a large actuation voltage (
To circumvent these hurdles, phase-change materials (PCMs) emerged as candidates to demonstrate photonic reconfigurability owing to their unique tunable properties [27,28]. PCMs possess high contrasts in the electrical resistivity and refractive index between the resonant-bonded crystalline and covalent-bonded amorphous phase states over a wide spectral range. They are non-volatile, reversible, and they provide fast and low energy actuation (
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
On the other hand, optical metasurfaces enable unprecedented flexibility in controlling the propagation of light through a spatially dependent and abrupt phase change at an interface that is imposed by ultrathin artificial arrays of engineered subwavelength nanoantennas [38]. Metasurfaces have realized a plethora of ultracompact, broadband, and efficient on-chip photonic devices, such as mode converters [39], polarization rotators [39], mode-pass polarizers [40], power splitters [41], asymmetric power transmitters [39], second-harmonic generators [42], remote near-field controllers [43], and guided waves to free space wave couplers [44–46]. However, these devices are passive and application specific because the optical properties of the constitutional meta-atoms are permanent once fabricated. To actively tune the optical properties of metasurfaces, several approaches have been introduced [47,48] with considerable interest in using PCMs [28,49] due to their advantages as discussed above. So far, such investigations on reconfigurable metasurfaces are focusing on controlling light propagating in free space, e.g., for bichromatic and multifocus Fresnel zone plates [50], beam steering [31], tunable color generators [51], dynamic spectrum controllers [52], switchable spectral filters [53], information processing [54], communication [55], imaging [56], hologram and augmented reality [57–59], vortex beam generators, and illusion and cloaking [60].
In this paper, we extend the concept of reconfigurable metasurfaces to PICs by reporting a novel dynamic near-visible nanophotonic (
Comparison of Previously Reported PCM-Based (
Design Principle | PCM Design | Bandwidth (THz) | Cross Talk (dB) | Operating Wavelength Range | Reference |
---|---|---|---|---|---|
Directional coupler | GST layer | 3.74 | IR | [ | |
Directional coupler | GSST layer | 4.4 | IR | [ | |
Contra-directional coupler | GST-Si grating | 0.275 | IR | [ | |
Micro-ring resonator | GST layer | 0.125 | IR | [ | |
Micro-ring resonator | GST layer | 0.125 | IR | [ | |
Micro-ring resonator | GST layer | 0.125 | IR | [ | |
Micro-ring resonator | GST layer | 0.125 | IR | [ | |
Micro-ring resonator | GST nanodisk | 0.125 | IR | [ | |
Micro-ring resonator | GST layer | 0.125 | IR | [ | |
Micro-ring resonator | 0.125 | NA | Visible | [ | |
2. MATERIALS AND METHODS
Figure 1(a) schematically illustrates the structure and functionality of our device, which is a Y-branch waveguide with a metasurface located on the surface of its stem. From bottom to top, the waveguide is formed by a silicon substrate, a 3 μm thick
Figure 1.Design of the proposed metasurface-based reconfigurable (
The materials are chosen to realize a device appropriate for near-visible integrated photonics. The SiN waveguide has the advantages of thermodynamic stability, wide spectral range of transparency (
In our designed metasurface, the nanorod antennas cause a spatial linear phase shift of the optical mode in the waveguide in addition to the propagation phase along the propagation direction (
The optical properties of the device were simulated using the finite-difference time-domain method (FDTD, Mode Solutions, Lumerical Ansys Inc.). The simulation domain was enclosed by eight standard perfectly matched layers as boundary conditions. To minimize the numerical dispersion and to enhance the interfaces’ resolution, we chose the nonuniform auto mesh setting with a minimum size of conformal mesh cell of 2.5 nm. The fundamental TE mode was launched into the stem SiN waveguide using a broadband mode source and enabling multifrequency calculations. The frequency-domain time power monitors were used to record the profile of the normalized electric field intensity, transmission at output ports, reflection, and scattering. For calculating the effective indices as well as the dispersion in the SiN waveguide, the finite-difference eigenmodes solver (FDE, Mode Solutions, Lumerical Ansys Inc.) was used. To estimate the effective indices of metasurface nanorod arrays, the effective medium theory was considered by using Rytov’s approximations.
To optimize the device performance, the ridge SiN multimode waveguide is chosen to have a rectangular shape with a height
The performance metrics of a waveguide optical switch are the cross talk and the transmission, where the former is defined as the contrast transmission ratio between the two output ports [14]. Although it is not easy to define a qualitative quantity for the performance metric, an efficient optical switch should exhibit low cross talk and high transmission. The metasurface was engineered adopting the direct design approach [80]. To obtain the target performance, first, the width (
Figure 2.Metasurface parametric sweep. (a)–(d) Device cross talk as a function of metasurface footprint (
3. RESULTS AND DISCUSSION
Before presenting the functionality of the metasurface, it is instructive to characterize how the single metasurface nanoantenna confines the light inside the waveguide. Figures 3(a) and 3(b) show the calculated field distribution (
Figure 3.Characterization of nanoantenna structure. (a) Profile (
Figure 4(a) shows the normalized electric field intensity profile
Figure 4.Simulated device performance for
To further characterize the device performance, Fig. 4(c) shows the spectra of total transmission (T,
Figures 4(d)–4(f) show the functionality of the switch for
4. CONCLUSION
In conclusion, we have proposed a conceptually novel approach for devices that dynamically control guided light using a reconfigurable metasurface. We have demonstrated a broadband compact and low-loss (
Acknowledgment
Acknowledgment. A. A. acknowledges the CAS-TWAS Presidents Fellowship Program. M. E. initiated the project and conceived the approach. C. G., W. L., M. E., and J. C. supervised the project. A. A. designed the metasurface and performed simulations. A. A., M. E., W. L., J. C., and G. V. analyzed the data. C. S. contributed to the discussions. A. A. wrote the paper with input from all the authors. All authors discussed the research.
APPENDIX A: THE DRAWBACKS OF USING LARGE-AREA PCMs FOR DEVICES’ ACTUATION MECHANISMS
The use of large-area PCMs creates a considerable barrier to the actuation mechanism because of the following reasons: first, the lack of optimization for additional scaling and integration because of the inaccurate, slow, and diffraction-limited alignment process [
A practical solution is reducing the PCMs’ volume to the subwavelength scale [
APPENDIX B: THE NEED FOR VISIBLE/NEAR-VISIBLE PHOTONIC INTEGRATED DEVICES
The PCM-based integrated devices reported thus far are restricted to the infrared region, where the silicon waveguide exhibits optical transparency and where the PCM (GST and GSST) shows low absorption and high
APPENDIX C: THE DESIGN OF A STEM MULTIMODE WAVEGUIDE
To study the MMI effect that takes place in our SiN waveguide, it is vital to check the properties of the supported modes in the waveguide. Therefore, in Mode Solutions (Lumerical Ansys Inc), the FDE method was used to calculate the dependence of stem waveguide width (
Figure 5.Multimode waveguide characterization. The dependence of waveguide width on the (a)
APPENDIX D: THE ROLE OF OPTIMIZING THE HEIGHT AND WIDTH OF TiO2 IN THE DEVICE PERFORMANCE
To justify the selected dimensions for
Figure 6.Parametric sweep of
Figure 7.Full-wave simulation showing the optical field intensity
APPENDIX E: THE SUGGESTED FABRICATION METHOD AND EXPERIMENTAL SETUP OF RECONFIGURABLE METASURFACE-BASED (1×2) WAVEGUIDE SWITCH
The fabrication of nanorod arrays on top of nanophotonic waveguides was previously described by Yu
Figure 8.Suggested fabrication method employing three steps of electron beam lithography: (a) two positive resists followed by LPCVD to transfer the desired patterns of the nanorod arrays onto the developed gaps and (b) a negative resist followed by reactive ion etching (RIE) to define the SiN waveguide.
Figure 9.Device fabrication tolerance. (a) and (b) Simulated device cross talk for the fundamental mode operating at
Figure 10.Schematic illustration of the experimental setup suggested for characterizing the performance of the proposed reconfigurable switch. Here, PPG is a programmable pulse generator, PC is a power controller, and M is a mirror.
APPENDIX F: THE EFFECTIVE INDICES OF A NANOROD-ARRAY-LOADED SiN WAVEGUIDE
The effective refractive indices of each nanorod array in our metasurface were calculated using Rytov’s approximation [
The effective indices of
The effective index of a
Figures
Figure 11.Sketches showing
Figure 12.Modes in the input and output ports of SiN waveguides. Simulated
APPENDIX G: MODAL PROFILES AT THE DEVICE INPUT AND OUTPUT PORTS
It is important to note that the produced modes at the output ports of the device maintain the polarization of the input TE00 mode in both Sb2S3 phases. Figure
References
[1] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).
[2] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).
[3] G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz, D. A. B. Miller, D. Psaltis. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).
[4] W. Bogaerts, D. Pérez, J. Capmany, D. A. B. Miller, J. Poon, D. Englund, F. Morichetti, A. Melloni. Programmable photonic circuits. Nature, 586, 207-216(2020).
[5] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).
[6] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, J. Grollier. Neuromorphic computing with nanoscale spintronic oscillators. Nature, 547, 428-431(2017).
[7] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).
[8] A. Blais, S. M. Girvin, W. D. Oliver. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys., 16, 247-256(2020).
[9] S. Leedumrongwatthanakun, L. Innocenti, H. Defienne, T. Juffmann, A. Ferraro, M. Paternostro, S. Gigan. Programmable linear quantum networks with a multimode fibre. Nat. Photonics, 14, 139-142(2020).
[10] Q. Ma, L. Chen, H. B. Jing, Q. R. Hong, H. Y. Cui, Y. Liu, L. Li, T. J. Cui. Controllable and programmable nonreciprocity based on detachable digital coding metasurface. Adv. Opt. Mater., 7, 1901285(2019).
[11] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).
[12] Y. Wang, W. Li, M. Li, S. Zhao, F. De Ferrari, M. Liscidini, F. G. Omenetto. Biomaterial-based ‘structured opals’ with programmable combination of diffractive optical elements and photonic bandgap effects. Adv. Mater., 31, 1805312(2019).
[13] Z. Li, J. Zou, H. Zhu, B. T. T. Nguyen, Y. Shi, P. Y. Liu, R. C. Bailey, J. Zhou, H. Wang, Z. Yang, Y. Jin, P. H. Yap, H. Cai, Y. Hao, A. Q. Liu. Biotoxoid photonic sensors with temperature insensitivity using a cascade of ring resonator and Mach–Zehnder interferometer. ACS Sens., 5, 2448-2456(2020).
[14] P. Xu, J. Zheng, J. K. Doylend, A. Majumdar. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon., 6, 553-557(2019).
[15] M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, V. Pruneri. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett., 103, 141119(2013).
[16] M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, W. H. P. Pernice. Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks. Adv. Opt. Mater., 5, 1600346(2017).
[17] J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, A. Majumdar. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express, 8, 1551-1561(2018).
[18] Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, J. Hu. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).
[19] C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, M. Li. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photon., 6, 87-92(2019).
[20] C. Zhang, M. Zhang, Y. Xie, Y. Shi, R. Kumar, R. R. Panepucci, D. Dai. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photon. Res., 8, 1171-1176(2020).
[21] T. J. Seok, N. Quack, S. Han, R. S. Muller, M. C. Wu. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64-70(2016).
[22] T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, M. C. Wu. Silicon photonic wavelength cross-connect with integrated MEMS switching. APL Photon., 4, 100803(2019).
[23] J. Zheng, S. Zhu, P. Xu, S. Dunham, A. Majumdar. Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters. ACS Appl. Mater. Interfaces, 12, 21827-21836(2020).
[24] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, M. Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 14, 37-43(2020).
[25] M. Thomaschewski, V. A. Zenin, C. Wolff, S. I. Bozhevolnyi. Plasmonic monolithic lithium niobate directional coupler switches. Nat. Commun., 11, 748(2020).
[26] D. Pérez, I. Gasulla, P. Das Mahapatra, J. Capmany. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photon., 12, 709-786(2020).
[27] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017).
[28] S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, A. Adibi. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189-1241(2020).
[29] N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. P. Pernice, H. Bhaskaran. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv., 5, eaaw2687(2019).
[30] D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, S. R. Elliott. Breaking the speed limits of phase-change memory. Science, 336, 1566(2012).
[31] C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, C. D. Wright. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater., 28, 1704993(2018).
[32] C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. On-chip photonic memory elements employing phase-change materials. Adv. Mater., 26, 1372-1377(2014).
[33] Z. Cheng, C. Ríos, N. Youngblood, C. D. Wright, W. H. P. Pernice, H. Bhaskaran. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater., 30, 1802435(2018).
[34] M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett., 101, 221101(2012).
[35] H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, W.-P. Huang. Simulations of silicon-on-insulator channel-waveguide electrooptical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer. J. Lightwave Technol., 33, 1805-1813(2015).
[36] J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, W. H. P. Pernice. Calculating with light using a chip-scale all-optical abacus. Nat. Commun., 8, 1256(2017).
[37] M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, X. Miao. Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater., 30, 2003419(2020).
[38] A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, F. Capasso. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287-296(2021).
[39] Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, N. Yu. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol., 12, 675-683(2017).
[40] B. Wang, S. Blaize, R. Salas-Montiel. Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics. Nanoscale, 11, 20685-20692(2019).
[41] A. Alquliah, M. Elkabbash, J. Zhang, J. Cheng, C. Guo. Ultrabroadband, compact, polarization independent and efficient metasurface-based power splitter on lithium niobate waveguides. Opt. Express, 29, 8160-8170(2021).
[42] C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, M. Lončar. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 8, 2098(2017).
[43] V. Ginis, M. Piccardo, M. Tamagnone, J. Lu, M. Qiu, S. Kheifets, F. Capasso. Remote structuring of near-field landscapes. Science, 369, 436-440(2020).
[44] X. Guo, Y. Ding, X. Chen, Y. Duan, X. Ni. Molding free-space light with guided wave–driven metasurfaces. Sci. Adv., 6, eabb4142(2020).
[45] R. Guo, M. Decker, F. Setzpfandt, X. Gai, D.-Y. Choi, R. Kiselev, A. Chipouline, I. Staude, T. Pertsch, D. N. Neshev, Y. S. Kivshar. High–bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Sci. Adv., 3, e1700007(2017).
[46] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).
[47] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).
[48] O. Tsilipakos, A. C. Tasolamprou, A. Pitilakis, F. Liu, X. Wang, M. S. Mirmoosa, D. C. Tzarouchis, S. Abadal, H. Taghvaee, C. Liaskos, A. Tsioliaridou, J. Georgiou, A. Cabellos-Aparicio, E. Alarcón, S. Ioannidis, A. Pitsillides, I. F. Akyildiz, N. V. Kantartzis, E. N. Economou, C. M. Soukoulis, M. Kafesaki, S. Tretyakov. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers. Adv. Opt. Mater., 8, 2000783(2020).
[49] F. Ding, Y. Yang, S. I. Bozhevolnyi. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater., 7, 1801709(2019).
[50] Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N. I. Zheludev. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2016).
[51] S. G.-C. Carrillo, L. Trimby, Y.-Y. Au, V. K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Ríos, H. Bhaskaran, C. D. Wright. A nonvolatile phase-change metamaterial color display. Adv. Opt. Mater., 7, 1801782(2019).
[52] Z. Zhu, P. G. Evans, R. F. Haglund, J. G. Valentine. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett., 17, 4881-4885(2017).
[53] C. Ruiz de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. G.-C. Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, C. D. Wright. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 7, 476-484(2020).
[54] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).
[55] L. Zhang, M. Z. Chen, W. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Cheng, T. J. Cui. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron., 4, 218-227(2021).
[56] L. Li, Y. Shuang, Q. Ma, H. Li, H. Zhao, M. Wei, C. Liu, C. Hao, C.-W. Qiu, T. J. Cui. Intelligent metasurface imager and recognizer. Light Sci. Appl., 8, 97(2019).
[57] R.-B. Hwang. Binary meta-hologram for a reconfigurable holographic metamaterial antenna. Sci. Rep., 10, 8586(2020).
[58] C. Liu, W. M. Yu, Q. Ma, L. Li, T. J. Cui. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network. Photon. Res., 9, B159-B167(2021).
[59] J. Xiong, S.-T. Wu. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight, 1, 3(2021).
[60] X. G. Zhang, W. X. Jiang, H. L. Jiang, Q. Wang, H. W. Tian, L. Bai, Z. J. Luo, S. Sun, Y. Luo, C.-W. Qiu, T. J. Cui. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron., 3, 165-171(2020).
[61] Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, J. Hu. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett., 43, 94-97(2018).
[62] H. Hu, H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, B. M. A. Rahman. Contra-directional switching enabled by Si-GST grating. Opt. Express, 28, 1574-1584(2020).
[63] Z. Fang, J. Zheng, A. Saxena, J. Whitehead, Y. Chen, A. Majumdar. Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material. Adv. Opt. Mater., 9, 2002049(2021).
[64] X. Li, N. Youngblood, Z. Cheng, S. G.-C. Carrillo, E. Gemo, W. H. P. Pernice, C. D. Wright, H. Bhaskaran. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica, 7, 218-225(2020).
[65] W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, R. E. Simpson. Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater., 29, 1806181(2019).
[66] K. V. Sreekanth, Q. Ouyang, S. Sreejith, S. Zeng, W. Lishu, E. Ilker, W. Dong, M. ElKabbash, Y. Ting, C. T. Lim, M. Hinczewski, G. Strangi, K.-T. Yong, R. E. Simpson, R. Singh. Phase-change-material-based low-loss visible-frequency hyperbolic metamaterials for ultrasensitive label-free biosensing. Adv. Opt. Mater., 7, 1900081(2019).
[67] M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, O. L. Muskens. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater., 30, 2002447(2020).
[68] W. Zhu, R. Yang, G. Geng, Y. Fan, X. Guo, P. Li, Q. Fu, F. Zhang, C. Gu, J. Li. Titanium dioxide metasurface manipulating high-efficiency and broadband photonic spin Hall effect in visible regime. Nanophotonics, 9, 4327-4335(2020).
[69] M. Wuttig, N. Yamada. Phase-change materials for rewriteable data storage. Nat. Mater., 6, 824-832(2007).
[70] K. R. Safronov, D. N. Gulkin, I. M. Antropov, K. A. Abrashitova, V. O. Bessonov, A. A. Fedyanin. Multimode interference of Bloch surface electromagnetic waves. ACS Nano, 14, 10428-10437(2020).
[71] P. Sethi, A. Haldar, S. K. Selvaraja. Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator. Opt. Express, 25, 10196-10203(2017).
[72] Y. Fu, T. Ye, W. Tang, T. Chu. Efficient adiabatic silicon-on-insulator waveguide taper. Photon. Res., 2, A41-A44(2014).
[73] J. Zhang, J. Yang, H. Xin, J. Huang, D. Chen, Z. Zhaojian. Ultrashort and efficient adiabatic waveguide taper based on thin flat focusing lenses. Opt. Express, 25, 19894-19903(2017).
[74] C. Sun, Y. Yu, X. Zhang. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt. Lett., 42, 4913-4916(2017).
[75] Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su. Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photon., 8, 202-208(2021).
[76] J. M. Luque-González, R. Halir, J. G. Wangüemert-Pérez, J. de-Oliva-Rubio, J. H. Schmid, P. Cheben, Í. Molina-Fernández, A. Ortega-Moñux. An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials. Laser Photon. Rev., 13, 1900172(2019).
[77] C. Yao, S. C. Singh, M. ElKabbash, J. Zhang, H. Lu, C. Guo. Quasi-rhombus metasurfaces as multimode interference couplers for controlling the propagation of modes in dielectric-loaded waveguides. Opt. Lett., 44, 1654-1657(2019).
[78] E. D. Palik. Handbook of Optical Constants of Solids(2012).
[79] M. Delaney, I. Zeimpekis, D. Lawson, D. Hewak, O. Muskens. A new family of ultra-low loss reversible phase change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater., 30, 2002447(2020).
[80] M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, P. Genevet. Numerical optimization methods for metasurfaces. Laser Photon. Rev., 14, 1900445(2020).
[81] K. Koshelev, Y. Kivshar. Dielectric resonant metaphotonics. ACS Photon., 8, 102-112(2021).
[82] I. Staude, T. Pertsch, Y. S. Kivshar. All-dielectric resonant meta-optics lightens up. ACS Photon., 6, 802-814(2019).
[83] R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, S. Janz. Waveguide sub-wavelength structures: a review of principles and applications. Laser Photon. Rev., 9, 25-49(2015).
[84] P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, D. R. Smith. Subwavelength integrated photonics. Nature, 560, 565-572(2018).
[85] J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, A. Majumdar. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater., 32, 2001218(2020).
[86] Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, J. Hu. Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett., 118, 210501(2021).
[87] K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig. Resonant bonding in crystalline phase-change materials. Nat. Mater., 7, 653-658(2008).
[88] Y. Wang, P. Landreman, D. Schoen, K. Okabe, A. Marshall, U. Celano, H. S. P. Wong, J. Park, M. L. Brongersma. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol., 16, 667-672(2021).
[89] Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, J. Hu. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).
[90] T. Akiyama, M. Uno, H. Kitaura, K. Narumi, R. Kojima, K. Nishiuchi, N. Yamada. Rewritable dual-layer phase-change optical disk utilizing a blue-violet laser. Jpn. J. Appl. Phys., 40, 1598-1603(2001).
[91] W. Zhang, R. Mazzarello, M. Wuttig, E. Ma. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater., 4, 150-168(2019).
[92] C. R. De Galarreta Fanjul. Reconfigurable phase-change optical metasurfaces: novel design concepts to practicable devices(2020).
[93] P. Trofimov, A. P. Pushkarev, I. S. Sinev, V. V. Fedorov, S. Bruyère, A. Bolshakov, I. S. Mukhin, S. V. Makarov. Perovskite–gallium phosphide platform for reconfigurable visible-light nanophotonic chip. ACS Nano, 14, 8126-8134(2020).
[94] B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, M. Lončar. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380-384(2019).
[95] H. M. Mbonde, H. C. Frankis, J. D. B. Bradley. Enhanced nonlinearity and engineered anomalous dispersion in TeO2-coated Si3N4 waveguides. IEEE Photon. J., 12, 2200210(2020).
[96] H. El Dirani, L. Youssef, C. Petit-Etienne, S. Kerdiles, P. Grosse, C. Monat, E. Pargon, C. Sciancalepore. Ultralow-loss tightly confining Si3N4 waveguides and high-
[97] R. R. Grote, L. C. Bassett. Single-mode optical waveguides on native high-refractive-index substrates. APL Photon., 1, 071302(2016).
[98] K. Bi, Q. Wang, J. Xu, L. Chen, C. Lan, M. Lei. All-dielectric metamaterial fabrication techniques. Adv. Opt. Mater., 9, 2001474(2021).
[99] S. Rytov. Electromagnetic properties of a finely stratified medium. J. Exp. Theor. Phys., 2, 466-475(1956).

Set citation alerts for the article
Please enter your email address