• Laser & Optoelectronics Progress
  • Vol. 58, Issue 19, 1900003 (2021)
Tianyu Sun1, Mingjun Xia1、*, and Lei Qiao2
Author Affiliations
  • 1College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou , Zhejiang 310027, China
  • 2ZTE Corporation, Shenzhen , Guangdong 518057, China
  • show less
    DOI: 10.3788/LOP202158.1900003 Cite this Article Set citation alerts
    Tianyu Sun, Mingjun Xia, Lei Qiao. Failure Mechanism and Detection Analysis of Semiconductor Laser[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900003 Copy Citation Text show less
    References

    [1] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366(1962).

    [2] Zhu Z C, Ye J. Overview of lasers for material processing[J]. Heat Treatment, 23, 1-6(2008).

    [3] Zhu N H. Status and prospect of directly modulated semiconductor lasers[J]. Optics & Optoelectronic Technology, 17, 1-5(2019).

    [4] Yuan Q H, Jing H Q, Zhang Q Y et al. Development and applications of GaAs-based near-infrared high power semiconductor lasers[J]. Laser & Optoelectronics Progress, 56, 040003(2019).

    [5] Lu D, Yang Q L, Wang H et al. Review of semiconductor distributed feedback lasers in the optical communication band[J]. Chinese Journal of Lasers, 47, 0701001(2020).

    [6] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).

    [7] Meng X, Ning Y Q, Zhang J W et al. Research progress of red semiconductor laser diodes for laser display[J]. Laser & Optoelectronics Progress, 56, 180001(2019).

    [8] Zhang Y, Xu P. Research progress of GaN-based laser diodes[J]. Nonferrous Metal Materials and Engineering, 41, 54-60(2020).

    [9] Ueda O. Degradation of III-V opto-electronic devices[J]. Journal of the Electrochemical Society, 135, 11C(1988).

    [10] Petroff P, Hartman R L. Rapid degradation phenomenon in heterojunction GaAlAs-GaAs lasers[J]. Journal of Applied Physics, 45, 3899-3903(1974).

    [11] Maeda K, Sato M, Kubo A et al. Quantitative measurements of recombination enhanced dislocation glide in gallium arsenide[J]. Journal of Applied Physics, 54, 161-168(1983).

    [12] Yang S H, Huang Y. Progress in high power semiconductor lasers lifetime evaluation[J]. Laser & Optoelectronics Progress, 44, 34-37(2007).

    [13] Gao S X, Wei B, Lü W Q et al. Failure analysis of high power diode laser array[J]. High Power Laser & Particle Beams, 17, 97-100(2005).

    [14] Jimenez J, Tomm J W. Photoluminescence (PL) techniques[M]. Spectroscopic analysis of optoelectronic semiconductors. Springer series in optical sciences, 202, 143-211(2016).

    [15] Sanayeh M B, Jaeger A, Schmid W et al. Investigation of dark line defects induced by catastrophic optical damage in broad-area AlGaInP laser diodes[J]. Applied Physics Letters, 89, 101111(2006).

    [16] Liu J X, Wang J, Sun X J et al. Performance improvement of InGaN-based laser grown on Si by suppressing point defects[J]. Optics Express, 27, 25943-25952(2019).

    [17] Liu Q K, Kong J X, Zhu L N et al. Failure mode analysis of high-power laser diodes by electroluminescence[J]. Chinese Journal of Luminescence, 39, 180-187(2018).

    [18] Martín-Martín A, Avella M, Iñiguez M P et al. A physical model for the rapid degradation of semiconductor laser diodes[J]. Applied Physics Letters, 93, 171106(2008).

    [19] Qiao Y B, Feng S W, Xiong C et al. Spatial hole burning degradation of AlGaAs/GaAs laser diodes[J]. Applied Physics Letters, 99, 103506(2011).

    [20] Dadgostar S, Souto J, Jiménez J. CL as a tool for device characterisation: the case of laser diode degradation[J]. Nano Express, 2, 014001(2021).

    [21] Hempel M, la Mattina F, Tomm J W et al. Defect evolution during catastrophic optical damage of diode lasers[J]. Semiconductor Science and Technology, 26, 075020(2011).

    [22] Yue F Y, Mao F, Wang H et al. Infrared defect emission and thermal effect in high power diode lasers[J]. Laser & Optoelectronics Progress, 56, 110001(2019).

    [23] Gong X Q. The study for the accelerated degradation test method and facet coating reliability of high power GaAs-based laser diodes[D](2016).

    [24] Zhang S Y. The catastrophic optical damage monitoring and failure mechanism study of high power GaAs-based semiconductor laser diodes[D](2018).

    [26] Wang X, Qu Y, Gao T et al. Study on vacuum cleavage passivation technology of GaAs semiconductor laser[J]. Semiconductor Optoelectronics, 35, 1013-1015, 1049(2014).

    [27] Ling X H, Cui B F, Zhang S et al. Failure analysis of 980 nm large-optical-cavity single light bar high-power LD[J]. Laser & Infrared, 45, 369-372(2015).

    [28] Beister G, Maege J, Sebastian J et al. Stability of sulfur-passivated facets of InGaAs-AlGaAs laser diodes[J]. IEEE Photonics Technology Letters, 8, 1124-1126(1996).

    [29] Berkovits V L, L’Vova T V, Ulin V P. Chemical nitridation of GaAs(100) by hydrazine-sulfide water solutions[J]. Vacuum, 57, 201-207(2000).

    [30] Oshima M, Scimeca T, Watanabe Y et al. Oxidation of sulfur-treated GaAs surfaces studied by photoluminescence and photoelectron spectroscopy[J]. Japanese Journal of Applied Physics, 32, 518(1993).

    [31] Bessolov V N, Konenkova E V, Lebedev M V. Solvent effect on the properties of sulfur passivated GaAs[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 14, 2761-2766(1996).

    [32] Nakagawa O S, Ashock S, Sheen C W et al. GaAs interfaces with octadecyl thiol self-assembled monolayer: structural and electrical properties[J]. Japanese Journal of Applied Physics, 30, 3759-3762(1991).

    [33] Berkovits V L, Gordeeva A B, L’vova T V et al. Nitride and sulfide chemisorbed layers as the surface passivants for A3B5 semiconductors[M]. Kervalishvili P J, Yannakopoulos P H. Nuclear radiation nanosensors and nanosensory systems, 61-79(2016).

    [34] Lin T, Sun H, Zhang H Q et al. Present status of impurity free vacancy disordering research and application[J]. Laser & Optoelectronics Progress, 52, 030003(2015).

    [35] Ungar J E, Kwong N S K, Oh S W et al. High power 980 nm nonabsorbing facet lasers[J]. Electronics Letters, 30, 1766-1767(1994).

    [36] Lammert R M, Ungar J E, Oh S W et al. High-power InGaAs-GaAs-AlGaAs distributed feedback lasers with nonabsorbing mirrors[J]. Electronics Letters, 34, 886-887(1998).

    [37] Lammert R M, Coleman J J, Smith G M et al. Strained-layer InGaAs-GaAs-AlGaAs buried-heterostructure lasers with nonabsorbing mirrors by selective-area MOCVD[J]. Electronics Letters, 31, 1070-1072(1995).

    [38] Laidig W D, Holonyak N, Camras M D et al. Disorder of an AlAs‐GaAs superlattice by impurity diffusion[J]. Applied Physics Letters, 38, 776-778(1981).

    [39] Ueno Y, Endo K, Fujii H et al. Continuous-wave high-power (75 mW) operation of a transverse-mode stabilised window-structure 680 nm AlGaInP visible laser diode[J]. Electronics Letters, 26, 1726-1728(1990).

    [40] Arimoto S, Yasuda M, Shima A et al. 150 mW fundamental-transverse-mode operation of 670 nm window laser diode[J]. IEEE Journal of Quantum Electronics, 29, 1874-1879(1993).

    [41] Taniguchi H, Ishii H, Minato R et al. 25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD)[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1176-1179(2007).

    [42] Morita T, Nagakura T, Torii K et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1502104(2013).

    [43] Collot P, Arias J, Mira V et al. Nonabsorbing mirrors for AlGaAs quantum well lasers by impurity-free interdiffusion[J]. Proceedings of SPIE, 3628, 260-266(1999).

    [44] Yao N, Zhao Y H, Liu S P et al. High power 915 nm semiconductor lasers with non-absorbing windows[J]. Semiconductor Technology, 40, 596-600(2015).

    [45] Wang X, Zhao Y H, Zhu L N et al. Impurity-free vacancy diffusion induces quantum well intermixing in 915 nm semiconductor laser based on SiO2 film[J]. Acta Photonica Sinica, 47, 0314003(2018).

    [46] Zhou L, Bo B X, Wang Y H et al. Study of 940 nm semiconductor lasers with non-absorb window structure fabricated by impurity-free vacancy disordering[J]. Chinese Journal of Lasers, 39, 0802001(2012).

    [47] Sagawa M, Hiramoto K, Uomi K et al. High power COD-free operation of 0.98 µm InGaAs/GaAs/InGaP lasers with non-injection regions near the facets[J]. Electronics Letters, 30, 1410-1411(1994).

    [48] Fang G Z, Xiao J W, Ma X Y et al. High power GaAs/AlGaAs (λ=808 nm) laser diode arrays with non-injection regions near the facets[J]. High Technology Letters, 10, 9-11(2000).

    [49] Zhang S Z, Yang H W, Hua J Z et al. High power laser diode with non-injection regions near the facet[J]. Micronanoelectronic Technology, 46, 270-273(2009).

    [50] Liu B, Zhang J M, Ma X Y et al. Investigation of 980 nm ridge waveguide lasers with current non-injection regions by He ion implantaion[J]. Chinese Journal of Semiconductors, 24, 234-237(2003).

    [51] Liu B, Liu Y Y, Cui B F. Long-term aging and failure analysis for 980 nm laser diodes[J]. Laser & Optoelectronics Progress, 49, 091404(2012).

    [52] He X, Cui B F, Liu M H et al. Research on nitrogen passivation for high power semiconductor lasers[J]. Laser & Infrared, 46, 805-808(2016).

    [53] Zhang W C, Han H P, Yang J. The material property and growing method of InP single crystal[J]. Equipment for Electronic Products Manufacturing, 47, 36-41(2018).

    [54] Zhou C F, Lan T P, Sun Q. GaAs materials: a review of technological development and market demands[J]. Tianjin Science & Technology, 42, 11-15(2015).

    [55] Lee J W, Shichijo H, Tsai H L et al. Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates[J]. Applied Physics Letters, 50, 31-33(1987).

    [56] Yamaguchi M. Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices[J]. Journal of Materials Research, 6, 376-384(1991).

    [57] Beneking H, Narozny P, Emeis N et al. Reduction of dislocations in GaAs and InP epitaxial layers by quasi ternary growth and its effect on device performance[J]. Journal of Electronic Materials, 15, 247-250(1986).

    [58] Tang M C, Chen S M, Wu J et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers[J]. Optics Express, 22, 11528-11535(2014).

    [59] Song J, Choi J, Han J. Improving performance of semipolar (202¯1) light emitting diodes through reduction of threading dislocations by AlGaN/GaN superlattice interlayer[J]. Journal of Crystal Growth, 536, 125575(2020).

    [60] Ueda O, Pearton S J[M]. Materials and reliability handbook for semiconductor optical and electron devices, 153-154(2013).

    [61] Liu X S, Zhao W, Xiong L L et al. Materials in high power semiconductor laser packaging[M]. Packaging of high power semiconductor lasers. Micro- and opto-electronic materials, structures, and systems, 155-183(2014).

    [62] Rasheed F F, Jasim S Y, Jassim M J. Controlling the wavelength of a high power diode laser using thermoelectric cooler[J]. Iraqi Journal of Physics, 10, 66-70(2012).

    [63] Zhao H, Li B, Wang W J et al. Water cooling radiator for solid state power supply in fast-axial-flow CO2 laser[J]. Frontiers of Optoelectronics, 9, 585-591(2016).

    [64] Kozłowska A, Łapka P, Seredyński M et al. Experimental study and numerical modeling of micro-channel cooler with micro-pipes for high-power diode laser arrays[J]. Applied Thermal Engineering, 91, 279-287(2015).

    [65] Yang B, Gao S X, Liu J et al. Spray cooling of high power diode laser[J]. High Power Laser and Particle Beams, 26, 9-12(2014).

    [66] Shu S L, Hou G Y, Wang L J et al. Heat dissipation in high-power semiconductor lasers with heat pipe cooling system[J]. Journal of Mechanical Science and Technology, 31, 2607-2612(2017).

    [67] Peng B, Zhang P, Chen T Q et al. Reliability of bonding interface in high power diode lasers[J]. Infrared and Laser Engineering, 47, 1105002(2018).

    [68] Xu H W, Ren Y X, An Z F et al. Packaging of 808 nm 1500 W continous wave operation perpendicularity laser diode stack[J]. Chinese Journal of Lasers, 37, 2769-2773(2010).

    [69] Huang X Z, Cui B F, Guo W L et al. Study on static electric shoke failure of GaAs based high power laser[J]. Laser & Infrared, 47, 698-702(2017).

    Tianyu Sun, Mingjun Xia, Lei Qiao. Failure Mechanism and Detection Analysis of Semiconductor Laser[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900003
    Download Citation