• Photonics Research
  • Vol. 9, Issue 3, 405 (2021)
Yuan Zhou1、*, Dong-Yan Lü2, and Wei-You Zeng2
Author Affiliations
  • 1School of Science, Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, China
  • 2School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
  • show less
    DOI: 10.1364/PRJ.405246 Cite this Article Set citation alerts
    Yuan Zhou, Dong-Yan Lü, Wei-You Zeng. Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system[J]. Photonics Research, 2021, 9(3): 405 Copy Citation Text show less
    References

    [1] A. Reiserer, G. Rempe. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys., 87, 1379-1418(2015).

    [2] H. J. Kimble. Strong interactions of single atoms and photons in cavity QED. Phys. Scr., T76, 127-137(1998).

    [3] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347-400(2015).

    [4] A. Goban, C.-L. Hung, S.-P. Yu, J. Hood, J. Muniz, J. Lee, M. Martin, A. McClung, K. Choi, D. Chang, O. Painter, H. Kimble. Atom–light interactions in photonic crystals. Nat. Commun., 5, 3808(2014).

    [5] J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, C. Becher. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol., 7, 69-74(2012).

    [6] X. Liu, M. C. Hersam. 2D materials for quantum information science. Nat. Rev. Mater., 4, 669-684(2019).

    [7] M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, J. Wrachtrup. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater., 3, 38-51(2018).

    [8] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 541, 473-480(2017).

    [9] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, B. Dayan. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 345, 903-906(2014).

    [10] I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol., 10, 775-778(2015).

    [11] I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett., 110, 037402(2013).

    [12] C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 110, 213604(2013).

    [13] D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin. A single-photon transistor using nanoscale surface plasmons. Nat. Phys., 3, 807-812(2007).

    [14] S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu. Chiral surface plasmon polaritons on metallic nanowires. Phys. Rev. Lett., 107, 096801(2011).

    [15] Q. Guo, T. Fu, J. Tang, D. Pan, S. Zhang, H. Xu. Routing a chiral Raman signal based on spin-orbit interaction of light. Phys. Rev. Lett., 123, 183903(2019).

    [16] K. Y. Bliokh, F. J. Rodrguez-Fortũno, F. Nori, A. V. Zayats. Spin-orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [17] A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs. From transverse angular momentum to photonic wheels. Nat. Photonics, 9, 789-795(2015).

    [18] K. Xia, F. Nori, M. Xiao. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett., 121, 203602(2018).

    [19] S. Yoo, Q.-H. Park. Chiral light-matter interaction in optical resonators. Phys. Rev. Lett., 114, 203003(2015).

    [20] K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, M. Kuwata-Gonokami. Circularly polarized light emission from semiconductor planar chiral nanostructures. Phys. Rev. Lett., 106, 057402(2011).

    [21] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 5, 5713(2014).

    [22] I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, A. M. Fox, M. S. Skolnick. Optical control of the emission direction of a quantum dot. Appl. Phys. Lett., 103, 241102(2013).

    [23] K. Y. Bliokh, F. Nori. Transverse spin of a surface polariton. Phys. Rev. A, 85, 061801(2012).

    [24] Z.-L. Xiang, S. Ashhab, J. Q. You, F. Nori. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 85, 623-653(2013).

    [25] C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, A. Rauschenbeutel. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X, 5, 041036(2015).

    [26] T. Ramos, H. Pichler, A. J. Daley, P. Zoller. Quantum spin dimers from chiral dissipation in cold-atom chains. Phys. Rev. Lett., 113, 237203(2014).

    [27] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 121, 153601(2018).

    [28] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. L. Hollenberg. The nitrogen-vacancy colour centre in diamond. Phys. Rep., 528, 1-45(2013).

    [29] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, R. L. Walsworth. Solid-state electronic spin coherence time approaching one second. Nat. Commun., 4, 1743(2013).

    [30] P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, D. J. Twitchen. Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys., 6, 249-253(2010).

    [31] P.-B. Li, Z.-L. Xiang, P. Rabl, F. Nori. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett., 117, 015502(2016).

    [32] D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, H. Wang. Optomechanical quantum control of a nitrogen-vacancy center in diamond. Phys. Rev. Lett., 116, 143602(2016).

    [33] D. A. Golter, T. K. Baldwin, H. Wang. Protecting a solid-state spin from decoherence using dressed spin states. Phys. Rev. Lett., 113, 237601(2014).

    [34] J. Teissier, A. Barfuss, P. Appel, E. Neu, P. Maletinsky. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett., 113, 020503(2014).

    [35] S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, M. D. Lukin. Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. Phys. Rev. Lett., 110, 156402(2013).

    [36] D. A. Golter, H. Wang. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett., 112, 116403(2014).

    [37] Y. Zhou, B. Li, X.-X. Li, F.-L. Li, P.-B. Li. Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions. Phys. Rev. A, 98, 052346(2018).

    [38] B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, F.-L. Li. Interfacing a topological qubit with a spin qubit in a hybrid quantum system. Phys. Rev. Appl., 11, 044026(2019).

    [39] Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, P.-B. Li. Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system. Phys. Rev. A, 96, 062333(2017).

    [40] S.-L. Ma, P.-B. Li, A.-P. Fang, S.-Y. Gao, F.-L. Li. Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble. Phys. Rev. A, 88, 013837(2013).

    [41] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, K. Nemoto. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature, 478, 221-224(2011).

    [42] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, D. Esteve. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett., 105, 140502(2010).

    [43] D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, A. S. Sørensen. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett., 105, 210501(2010).

    [44] P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, F.-L. Li. Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities. Phys. Rev. Appl., 4, 044003(2015).

    [45] X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, F. Nori. Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers. Phys. Rev. A, 88, 012329(2013).

    [46] W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, M. Feng. Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit. Phys. Rev. A, 83, 022302(2011).

    [47] Y.-S. Park, A. K. Cook, H. Wang. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett., 6, 2075-2079(2006).

    [48] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, M. D. Lukin. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 466, 730-734(2010).

    [49] I. Aharonovich, A. D. Greentree, S. Prawer. Diamond photonics. Nat. Photonics, 5, 397-405(2011).

    [50] J. L. O’Brien, A. Furusawa, J. Vučković. Photonic quantum technologies. Nat. Photonics, 3, 687-695(2009).

    [51] A. Faraon, C. Santori, Z. Huang, V. M. Acosta, R. G. Beausoleil. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett., 109, 033604(2012).

    [52] B. Li, P.-B. Li, Y. Zhou, S.-L. Ma, F.-L. Li. Quantum microwave-optical interface with nitrogen-vacancy centers in diamond. Phys. Rev. A, 96, 032342(2017).

    [53] X.-M. Jin, M. S. Kim, B. J. Smith. Quantum photonics: feature introduction. Photon. Res., 7, QP1-QP2(2019).

    [54] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, J. C. F. Matthews. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics, 12, 534-539(2018).

    [55] L. Gui-Lu. General quantum interference principle and duality computer. Commun. Theor. Phys., 45, 825-844(2006).

    [56] H.-R. Wei, G. Lu Long. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep., 5, 12918(2015).

    [57] M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, Y. Cheng. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).

    [58] C. Valagiannopoulos. Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy. Quantum Eng., 2, e52(2020).

    [59] J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature, 447, 836-839(2007).

    [60] N. Poli, C. W. Oates, P. Gill, G. M. Tino. Optical atomic clocks. Riv. Nuovo Cimento, 36, 555-624(2014).

    [61] A. Galindo, M. A. Martn-Delgado. Information and computation: classical and quantum aspects. Rev. Mod. Phys., 74, 347-423(2002).

    [62] S. Welte, B. Hacker, S. Daiss, S. Ritter, G. Rempe. Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X, 8, 011018(2018).

    [63] L.-M. Duan, H. J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 92, 127902(2004).

    [64] Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, G.-C. Guo. Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A, 70, 042314(2004).

    [65] L.-M. Duan, B. Wang, H. J. Kimble. Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A, 72, 032333(2005).

    [66] Y. L. Zhou, C. Z. Li. Robust quantum gates via a photon triggering electromagnetically induced transparency. Phys. Rev. A, 84, 044304(2011).

    [67] D. Solenov, S. E. Economou, T. L. Reinecke. Two-qubit quantum gates for defect qubits in diamond and similar systems. Phys. Rev. B, 88, 161403(2013).

    [68] G. Burkard, V. O. Shkolnikov, D. D. Awschalom. Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond. Phys. Rev. B, 95, 205420(2017).

    [69] Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, X.-M. Jin. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 124, 153601(2020).

    [70] Y. Chen, J. Gao, Z.-Q. Jiao, K. Sun, W.-G. Shen, L.-F. Qiao, H. Tang, X.-F. Lin, X.-M. Jin. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett., 121, 233602(2018).

    [71] B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, I. A. Walmsley. Quantum teleportation on a photonic chip. Nat. Photonics, 8, 770-774(2014).

    [72] C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, Z.-Q. Yan, Y. Wang, H. Tang, X.-M. Jin. Integrated measurement server for measurement-device-independent quantum key distribution network. Opt. Express, 27, 5982-5989(2019).

    [73] X. Jiang, L. Yang. Optothermal dynamics in whispering-gallery microresonators. Light Sci. Appl., 9, 24(2020).

    [74] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, Y.-F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 43, 2917-2920(2018).

    [75] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018).

    [76] Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, Y. Cheng. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Opt. Lett., 44, 5953-5956(2019).

    [77] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8, 383-387(2009).

    [78] W. Yang, R.-B. Liu. Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. Phys. Rev. Lett., 101, 180403(2008).

    [79] T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, J. Majer. Solid-state electron spin lifetime limited by phononic vacuum modes. Nat. Mater., 17, 313-317(2018).

    [80] L. Viola, E. Knill, S. Lloyd. Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 82, 2417-2421(1999).

    [81] W. M. Witzel, S. D. Sarma. Multiple-pulse coherence enhancement of solid state spin qubits. Phys. Rev. Lett., 98, 077601(2007).

    [82] W. Yao, R.-B. Liu, L. J. Sham. Restoring coherence lost to a slow interacting mesoscopic spin bath. Phys. Rev. Lett., 98, 077602(2007).

    [83] G. S. Uhrig. Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett., 98, 100504(2007).

    [84] B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg, F. Jelezko, J. Wrachtrup. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B, 83, 081201(2011).

    [85] C. A. Ryan, J. S. Hodges, D. G. Cory. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett., 105, 200402(2010).

    [86] J. R. West, D. A. Lidar, B. H. Fong, M. F. Gyure. High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett., 105, 230503(2010).

    [87] N. Zhao, Z.-Y. Wang, R.-B. Liu. Anomalous decoherence effect in a quantum bath. Phys. Rev. Lett., 106, 217205(2011).

    [88] N. Zhao, S.-W. Ho, R.-B. Liu. Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys. Rev. B, 85, 115303(2012).

    [89] N. Zhao, J. Wrachtrup, R.-B. Liu. Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath. Phys. Rev. A, 90, 032319(2014).

    [90] G. D. Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, R. Hanson. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science, 330, 60-63(2010).

    [91] M. J. Biercuk, M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, J. J. Bollinger. Optimized dynamical decoupling in a model quantum memory. Nature, 458, 996-1000(2009).

    [92] J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, R. B. Liu. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature, 461, 1265-1268(2009).

    [93] R. Hason, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, D. D. Awschalom. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science, 320, 352-355(2008).

    [94] J. R. Johansson, P. D. Nation, F. Nori. QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 183, 1760-1772(2012).

    [95] J. R. Johansson, P. D. Nation, F. Nori. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 184, 1234-1240(2013).

    CLP Journals

    [1] Yuan Zhou, Chang-Sheng Hu, Dong-Yan Lü, Xin-Ke Li, Hai-Ming Huang, Yong-Chen Xiong, Xin-You Lü. Synergistic enhancement of spin–phonon interaction in a hybrid system[J]. Photonics Research, 2022, 10(7): 1640

    [2] Yulan Li, Jie Ding, Zhenxu Bai, Xuezong Yang, Yuqi Li, Jingling Tang, Yu Zhang, Yaoyao Qi, Yulei Wang, Zhiwei Lu. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 2021, 9(3): 03000e35

    Yuan Zhou, Dong-Yan Lü, Wei-You Zeng. Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system[J]. Photonics Research, 2021, 9(3): 405
    Download Citation