• Acta Optica Sinica
  • Vol. 41, Issue 7, 0724001 (2021)
Lin Wang1、2、3 and Lei Zhang1、2、3、*
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Shanghai Synchrotron Radiation Facility, Shanghai 201204, China
  • show less
    DOI: 10.3788/AOS202141.0724001 Cite this Article Set citation alerts
    Lin Wang, Lei Zhang. Narrow-Spectrum Enhanced Sensor Based on Surface Plasmon Resonator[J]. Acta Optica Sinica, 2021, 41(7): 0724001 Copy Citation Text show less
    References

    [1] Yao P P, Sun L, Xu S L et al. Design of a scientific-grade CCD refrigeration system and analysis of its thermal characteristics[J]. Acta Optica Sinica, 40, 1704001(2020).

    [2] Wu P, Jiang Y S, Xu Z Q et al. Experimental research on CCD imaging equipment in intensive electromagnetic-pulse environment[J]. Acta Optica Sinica, 39, 0611002(2019).

    [3] Li C, Yang Q Q, Wang H J et al. Si1-xGex/Si resonant-cavity-enhanced photodetectors with a silicon-on-oxide reflector operating near 1.3 μm[J]. Applied Physics Letters, 77, 157-159(2000).

    [4] Dosunmu O I, Cannon D D, Emsley M K et al. Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 694-701(2004).

    [5] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [6] Maradudin A A, Sambles R J, Barnes W L. Modern plasmonics[M]. Amsterdam: Elsevier(2014).

    [7] Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing[J]. Nature Photonics, 3, 388-394(2009).

    [8] Wei R X, Wang Y W, Jiang L W et al. Detection of chemical vapor deposition-prepared graphene by surface plasmon polariton imaging[J]. Acta Optica Sinica, 39, 1124002(2019).

    [9] Wu M, Liang X Y, Sun D X et al. Design of asymmetric rectangular ring resonance cavity electrically adjustable filter based on surface plasmon polaritons[J]. Acta Optica Sinica, 40, 1423001(2020).

    [10] Yang H Y, Chen Y P, Xiao G L et al. MIM tunable plasmonic filter embedded with symmetrical sector metal resonator[J]. Acta Optica Sinica, 40, 1124001(2020).

    [11] Hohenau A, Krenn J R, Stepanov A L et al. Dielectric optical elements for surface plasmons[J]. Optics Letters, 30, 893-895(2005).

    [12] Bozhevolnyi S I, Volkov V S, Devaux E et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 440, 508-511(2006).

    [13] Ditlbacher H, Krenn J R, Schider G et al. Two-dimensional optics with surface plasmon polaritons[J]. Applied Physics Letters, 81, 1762-1764(2002).

    [14] Shen Y, Yu G P, Fu J W et al. Gain-assisted optical switching in plasmonic nanocavities[J]. Chinese Optics Letters, 10, 021301(2012). http://www.opticsjournal.net/Articles/Abstract?aid=OJ15113d119c1c233e

    [15] Zeng X, Gao Y K, Hu H F et al. A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing[J]. Journal of Applied Physics, 113, 133102(2013).

    [16] Atwater H A, Polman A. Erratum: plasmonics for improved photovoltaic devices[J]. Nature Materials, 9, 865(2010).

    Lin Wang, Lei Zhang. Narrow-Spectrum Enhanced Sensor Based on Surface Plasmon Resonator[J]. Acta Optica Sinica, 2021, 41(7): 0724001
    Download Citation