• Laser & Optoelectronics Progress
  • Vol. 60, Issue 3, 0312015 (2023)
Wenjuan Xing1, Zhonghan Yu1, Changyi Liu2,*, and Hongwei Zhao1,**
Author Affiliations
  • 1School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, Jilin, China
  • 2Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
  • show less
    DOI: 10.3788/LOP223365 Cite this Article Set citation alerts
    Wenjuan Xing, Zhonghan Yu, Changyi Liu, Hongwei Zhao. In-Situ Testing Techniques for Mechanical Properties of Materials: Development and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312015 Copy Citation Text show less
    References

    [1] Zhao J, Zhu J. Electron microscopy and in situ testing of mechanical deformation of carbon nanotubes[J]. Micron, 42, 663-679(2011).

    [2] Zhu Y. In situ nanomechanical testing of crystalline nanowires in electron microscopes[J]. JOM, 68, 84-93(2016).

    [5] Li S. The design, analysis and experimental research of an In-situ torsion testing apparatus for material mechanical properties[D](2015).

    [6] Zhao J C, Zhang S Z, Wan J et al. Development of in situ fatigue performance testing apparatus for materials under coupling conditions of high-temperature and combined mechanical loads[J]. IEEE Transactions on Instrumentation and Measurement, 70, 6012014(2021).

    [7] Liu C Y, Zhao H W, Ma Z C et al. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions[J]. The Review of Scientific Instruments, 89, 025112(2018).

    [8] Bradbury S. The development of the microscope during the last fifty years[J]. Journal of Physics E: Scientific Instruments, 1, 3-7(1968).

    [9] Yu M F, Dyer M J, Skidmore G D et al. Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope[J]. Nanotechnology, 10, 244-252(1999).

    [10] Minenkov A, Šantić N, Truglas T et al. Advanced preparation of plan-view specimens on a MEMS chip for in situ TEM heating experiments[J]. MRS Bulletin, 47, 359-370(2022).

    [11] Borrajo-Pelaez R, Hedström P. Recent developments of crystallographic analysis methods in the scanning electron microscope for applications in metallurgy[J]. Critical Reviews in Solid State and Materials Sciences, 43, 455-474(2018).

    [12] Brodusch N, Demers H, Gauvin R. Imaging with a commercial electron backscatter diffraction (EBSD) camera in a scanning electron microscope: a review[J]. Journal of Imaging, 4, 88(2018).

    [13] Woo N C, Cherenack K, Tröster G et al. Designing micro-patterned Ti films that survive up to 10% applied tensile strain[J]. Applied Physics A, 100, 281-285(2010).

    [15] Huang J G, Wang X S, Meng X K. SEM In Situ study on deformation behavior of Cu and Cu/Ni films under three-point bending[J]. Materials Transactions, 48, 2795-2798(2007).

    [16] Chen B, Yang R, Dong J et al. Development of in situ SEM torsion tester for microscale materials[J]. Measurement, 139, 421-425(2019).

    [17] Wang B M, Haque M A. In situ microstructural control and mechanical testing inside the transmission electron microscope at elevated temperatures[J]. JOM, 67, 1713-1720(2015).

    [18] Sato T, Jalabert L, Fujita H. Development of MEMS integrated into TEM setup to monitor shear deformation, force and stress for nanotribology[J]. Microelectronic Engineering, 112, 269-272(2013).

    [19] Gonzalez V, Cotte M, Vanmeert F et al. X-ray diffraction mapping for cultural heritage science: a review of experimental configurations and applications[J]. Chemistry-A European Journal, 26, 1703-1719(2020).

    [20] Khan H, Yerramilli A S, D’Oliveira A et al. Experimental methods in chemical engineering: X-ray diffraction spectroscopy: XRD[J]. The Canadian Journal of Chemical Engineering, 98, 1255-1266(2020).

    [21] Jain R. A review on the development of XRD in ferrite nanoparticles[J]. Journal of Superconductivity and Novel Magnetism, 35, 1033-1047(2022).

    [22] Namazu T, Inoue S. Characterization of single crystal silicon and electroplated nickel films by uniaxial tensile test with in situ X-ray diffraction measurement[J]. Fatigue & Fracture of Engineering Materials & Structures, 30, 13-20(2007).

    [23] Bontempi E, Zanola P, Gelfi M et al. Elastic behaviour of titanium dioxide films on polyimide substrates studied by in situ tensile testing in a X-ray diffractometer[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 268, 365-369(2010).

    [24] Yan Y Y, Cheng C, Zhang L et al. Deciphering the reaction mechanism of lithium-sulfur batteries by in situ/operando synchrotron-based characterization techniques[J]. Advanced Energy Materials, 9, 1900148(2019).

    [25] Song Z X, Li J J, Davis K D et al. Emerging applications of synchrotron radiation X-ray techniques in single atomic catalysts[J]. Small Methods, 6, 2201078(2022).

    [26] Wang Y B, Jia S S, Wei M G et al. Research progress on solidification structure of alloys by synchrotron X-ray radiography: a review[J]. Journal of Magnesium and Alloys, 8, 396-413(2020).

    [27] Spoerk-Erdely P, Staron P, Liu J et al. Exploring structural changes, manufacturing, joining, and repair of intermetallic γ-TiAl-based alloys: recent progress enabled by in situ synchrotron X-ray techniques[J]. Advanced Engineering Materials, 23, 2000947(2021).

    [28] Kumar P S, Pavithra K G, Naushad M. Characterization techniques for nanomaterials[M]. Thomas S, Sakho E H M, Kalarikkal N, et al. Nanomaterials for Solar Cell Applications, 97-124(2019).

    [29] Lewczuk B, Szyryńska N. Field-emission scanning electron microscope as a tool for large-area and large-volume ultrastructural studies[J]. Animals, 11, 3390(2021).

    [30] Sneddon G C, Trimby P W, Cairney J M. Transmission Kikuchi diffraction in a scanning electron microscope: a review[J]. Materials Science and Engineering: R: Reports, 110, 1-12(2016).

    [32] Hu X L. The development and experimental research on in situ three-point bending instrument[D](2014).

    [34] Frotscher M, Neuking K, Böckmann R et al. In situ scanning electron microscopic study of structural fatigue of struts, the characteristic elementary building units of medical stents[J]. Materials Science and Engineering: A, 481/482, 160-165(2008).

    [35] Son D, Kim J J, Kim J Y et al. Tensile properties and fatigue crack growth in LIGA nickel MEMS structures[J]. Materials Science and Engineering: A, 406, 274-278(2005).

    [36] Tsuchiya T, Yamaji Y, Sugano K et al. Tensile and tensile-mode fatigue testing of microscale specimens in constant humidity environment[J]. Experimental Mechanics, 50, 509-516(2010).

    [37] Gama A L, Morikawa S K. Monitoring fatigue crack growth in compact tension specimens using piezoelectric sensors[J]. Experimental Mechanics, 48, 247-252(2008).

    [38] Chen K S, Chen B Z, Huang C C. Design and control of a piezoelectric driven fatigue testing system for electronic packaging applications[J]. IEEE Transactions on Components and Packaging Technologies, 29, 841-849(2006).

    [39] Li Q C. Design and experimental research of an in situ tensile device for characterizing micro-mechanics of materilas at middle/low frequencies[D](2012).

    [40] Geathers J, Torbet C J, Jones J W et al. Investigating environmental effects on small fatigue crack growth in Ti-6242S using combined ultrasonic fatigue and scanning electron microscopy[J]. International Journal of Fatigue, 70, 154-162(2015).

    [41] Mason W P, Baerwald H. Piezoelectric crystals and their applications to ultrasonics[J]. Physics Today, 4, 23-24(1951).

    [42] Lu S. Design analysis and experimental research of an In-situ biaxial tensile device for characterizing mechanics of materials[D](2015).

    [43] Liu C Y, Ma Z C, Zhou L M et al. Correction method for mechanical performance testing instrument with tension-torsion coupling loading[J]. Measurement Science and Technology, 29, 105901(2018).

    [44] Ma Z C, Zhao H W, Wang K T et al. Novel correction methods on a miniature tensile device based on a modular non-standard layout[J]. Measurement Science and Technology, 24, 085901(2013).

    [45] Ma Z C, Zhao H W, Cheng H B et al. Effects of 2D misalignment on tensile results and corresponding correction methods to obtain the true stress-strain curve[J]. Measurement Science and Technology, 25, 115011(2014).

    [46] Ma Z C, Zhao H W, Zhang Q X et al. Modular correction method of bending elastic modulus based on sliding behavior of contact point[J]. Measurement Science and Technology, 26, 087001(2015).

    [47] Ma Z C, Zhao H W, Ren L Q. Measurement error of Young’s modulus considering the gravity and thermal expansion of thin specimens for in situ tensile testing[J]. Measurement Science and Technology, 27, 067001(2016).

    [48] Ma Z C, Zhao H W, Lu S et al. Method for determining the true stress of cross-shaped specimens subjected to biaxial tensile loads[J]. Instruments and Experimental Techniques, 59, 287-293(2016).

    [57] Giagmouris T, Kyriakides S, Korkolis Y P et al. On the localization and failure in aluminum shells due to crushing induced bending and tension[J]. International Journal of Solids and Structures, 47, 2680-2692(2010).

    [58] Daxin E, Guan Z P, Chen J S. Influence of additional tensile force on springback of tube under rotary draw bending[J]. Journal of Materials Engineering and Performance, 21, 2316-2322(2012).

    [59] Hannon A, Tiernan P. A review of planar biaxial tensile test systems for sheet metal[J]. Journal of Materials Processing Technology, 198, 1-13(2008).

    [60] Kulawinski D, Nagel K, Henkel S et al. Characterization of stress-strain behavior of a cast TRIP steel under different biaxial planar load ratios[J]. Engineering Fracture Mechanics, 78, 1684-1695(2011).

    [62] Kubo M, Yoshida H, Uenishi A et al. Development of biaxial tensile test system for in-situ scanning electron microscope and electron backscatter diffraction analysis[J]. ISIJ International, 56, 669-677(2016).

    [63] Liu H D. Design and experimental research of an in situ tensile-torsion mechanical testing device[D](2015).

    [64] Cheng H B. The design and experimental research on in-situ combined tension and bending testing instrument[D](2015).

    [65] Deepak K, Rajdeep S, Vajinder S et al. Study of diffusionless and diffusional transformations using in situ cooling and heating techniques in a scanning electron microscope[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 378, 20200284(2020).

    [66] Liang J C, Han Q N, He Z W et al. In-situ high-temperature mechanical property measurement technology and its application in scanning electron microscope[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 48, 71-87(2018).

    [67] Heard R, Huber J E, Siviour C et al. An investigation into experimental in situ scanning electron microscope (SEM) imaging at high temperature[J]. The Review of Scientific Instruments, 91, 063702(2020).

    [68] Kang W, Merrill M, Wheeler J M. In situ thermomechanical testing methods for micro/nano-scale materials[J]. Nanoscale, 9, 2666-2688(2017).

    [69] Tröger L, Pieper H H, Reichling M. Concept for support and heating of plate-like samples in the ultra-high vacuum[J]. The Review of Scientific Instruments, 84, 013703(2013).

    [70] Wetzig K, Edelmann J, Fischer W et al. LASEM: a novel combined device for laser modification in SEM[J]. Scanning, 9, 99-107(1987).

    [71] Foitzik A H, Füting M W, Hillrichs G et al. In situ laser heating in an environmental scanning electron microscope[J]. Scanning, 19, 119-124(1997).

    [72] Podor R, Bouala G I N, Ravaux J et al. Working with the ESEM at high temperature[J]. Materials Characterization, 151, 15-26(2019).

    [73] Kirch D M, Ziemons A, Burlet T et al. Laser powered heating stage in a scanning electron microscope for microstructural investigations at elevated temperatures[J]. The Review of Scientific Instruments, 79, 043902(2008).

    [74] Rahman F, Ngaile G, Hassan T. Development of scanning electron microscope-compatible multiaxial miniature testing system[J]. Measurement Science and Technology, 30, 105902(2019).

    [75] Liang J C, Wang Z, Xie H F et al. In situ scanning electron microscopy-based high-temperature deformation measurement of nickel-based single crystal superalloy up to 800[J]. Optics and Lasers in Engineering, 108, 1-14(2018).

    [76] Li L, Ngaile G, Hassan T. A novel hybrid heating method for mechanical testing of miniature specimens at elevated temperature[J]. Journal of Micro and Nano-Manufacturing, 5, 024501(2017).

    [77] Gregori G, Kleebe H J, Siegelin F et al. In situ SEM imaging at temperatures as high as 1450 ℃[J]. Journal of Electron Microscopy, 51, 347-352(2002).

    [78] Guo H X, Wei N, Zhao J L et al. The research of effectiveness of composite materials shield with electron irradiation[J]. Nuclear Electronics & Detection Technology, 24, 366-368, 383(2004).

    [79] Torres E A, Montoro F, Righetto R D et al. Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking[J]. Journal of Microscopy, 254, 157-165(2014).

    [80] Liang J C, Wang Z, Xie H F et al. In situ scanning electron microscopy analysis of effect of temperature on small fatigue crack growth behavior of nickel-based single-crystal superalloy[J]. International Journal of Fatigue, 128, 105195(2019).

    [81] Ma J Y, Lu J X, Tang L et al. A novel instrument for investigating the dynamic microstructure evolution of high temperature service materials up to 1150 ℃ in scanning electron microscope[J]. The Review of Scientific Instruments, 91, 043704(2020).

    [82] Zhang W J, Lu J X, Wang J et al. In-situ EBSD study of deformation behavior of Inconel 740H alloy at high-temperature tensile loading[J]. Journal of Alloys and Compounds, 820, 153424(2020).

    [83] Chen L B, Wu X L, Wang J et al. Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4 K by helium-4[J]. Cryogenics, 94, 103-109(2018).

    [86] Guery A, Hild F, Latourte F et al. Slip activities in polycrystals determined by coupling DIC measurements with crystal plasticity calculations[J]. International Journal of Plasticity, 81, 249-266(2016).

    [87] Latourte F, Salez T, Guery A et al. Deformation studies from in situ SEM experiments of a reactor pressure vessel steel at room and low temperatures[J]. Journal of Nuclear Materials, 454, 373-380(2014).

    [88] Paulsen C O, Broks R L, Karlsen M et al. Microstructure evolution in super duplex stainless steels containing σ-phase investigated at low-temperature using in situ SEM/EBSD tensile testing[J]. Metals, 8, 478(2018).

    [89] Chen L B, Zhao Y H, Liu X M et al. Development of an in situ analysis instrument for microstructure of materials with low temperature[J]. IOP Conference Series: Materials Science and Engineering, 756, 012021(2020).

    [90] Lei Y, Qin X, Wan F R et al. In-situ observation of martensitic transformation in Cu-Al-Mn cryogenic shape memory alloy[J]. Fusion Engineering and Design, 125, 603-607(2017).

    [91] Karlsen M, Grong Ø, Søfferud M et al. Scanning electron microscopy/electron backscatter diffraction-based observations of martensite variant selection and slip plane activity in supermartensitic stainless steels during plastic deformation at elevated, ambient, and subzero temperatures[J]. Metallurgical and Materials Transactions A, 40, 310-320(2009).

    [92] Chen L B, Zhou Q, Zhu X S et al. An optical cryostat for use in microscopy cooled by stirling-type pulse tube cryocooler[J]. Physics Procedia, 67, 354-359(2015).

    [93] Xie H C, Ma Z C, Zhang W et al. Strengthening effect of high-entropy alloys endowed by monolayer graphene[J]. Materials Today Physics, 27, 100800(2022).

    [94] Namini A S, Asl M S, Ali Delbari S. Influence of sintering temperature on microstructure and mechanical properties of Ti-Mo-B4C composites[J]. Metals and Materials International, 27, 1092-1102(2021).

    [95] Zhang Y H, Wang S A, Zhao X W et al. In situ study on fracture behavior of Z-pinned carbon fiber-reinforced aluminum matrix composite via scanning electron microscope (SEM)[J]. Materials, 12, 1941(2019).

    [96] Qiu X, Tariq N U H, Qi L et al. In-situ Sip/A380 alloy nano/micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 780, 597-606(2019).

    [97] Di Benedetto G L, Van Ramshorst M C J, Duvalois W et al. In-situ tensile testing of propellants in SEM: influence of temperature[J]. Propellants, Explosives, Pyrotechnics, 42, 1396-1400(2017).

    [98] Wang Z, Wu W W, Qian G A et al. In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature[J]. Engineering Fracture Mechanics, 214, 149-163(2019).

    [99] Jiang W, Wang S Q, Deng Y L et al. Microstructure stability and high temperature wear behavior of an austenite aging steel coating by laser cladding[J]. Materials Characterization, 184, 111700(2022).

    [100] Yang H, Jiang J S, Wang Z Z et al. Fatigue fracture mechanism of a nickel-based single crystal superalloy with partially recrystallized grains at 550 ℃ by in situ SEM studies[J]. Metals, 10, 1007(2020).

    [101] Zhu G L, Li S T, Wang R et al. In-situ SEM investigation on fracture behavior of GTD222 superalloy during tensile process at 760 ℃[J]. Journal of Materials Research and Technology, 9, 15185-15190(2020).

    [102] Cao K, Feng S Z, Han Y et al. Elastic straining of free-standing monolayer graphene[J]. Nature Communications, 11, 284(2020).

    [103] Summers W D, Alabort E, Kontis P et al. In-situ high-temperature tensile testing of a polycrystalline nickel-based superalloy[J]. Materials at High Temperatures, 33, 338-345(2016).

    [104] Podor R, Ravaux J, Brau H P. In situ experiments in the scanning electron microscope chamber[M]. Kazmiruk V. Scanning electron microscopy(2012).

    [105] Taylor S, Masters I, Li Z et al. Direct observation via in situ heated stage EBSD analysis of recrystallization of phosphorous deoxidised copper in unstrained and strained conditions[J]. Metals and Materials International, 26, 1030-1035(2020).

    [106] Ubhi H S, Parsons J, Othen N et al. In-situ EBSD phase transformation and recrystallisation[J]. Journal of Physics: Conference Series, 522, 012011(2014).

    [107] Bozzolo N, Jacomet S, Logé R E. Fast in-situ annealing stage coupled with EBSD: a suitable tool to observe quick recrystallization mechanisms[J]. Materials Characterization, 70, 28-32(2012).

    [108] Di Gioacchino F, Quinta da Fonseca J. An experimental study of the polycrystalline plasticity of austenitic stainless steel[J]. International Journal of Plasticity, 74, 92-109(2015).

    [109] Sinha S, Gurao N P. The role of crystallographic texture on load reversal and low cycle fatigue performance of commercially pure titanium[J]. Materials Science and Engineering: A, 691, 100-109(2017).

    [110] Han Q N, Wang W, Fang J W et al. In-situ SEM and EBSD study on fretting fatigue crack initiation of a directionally solidified Ni-based superalloy[J]. International Journal of Fatigue, 161, 106908(2022).

    [111] Zeng Z R, Zhu Y M, Xu S W et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys[J]. Acta Materialia, 105, 479-494(2016).

    [112] Wright S I, Field D P, Nowell M M. Impact of local texture on recrystallization and grain growth via in situ EBSD[J]. Materials Science Forum, 495/496/497, 1121-1130(2005).

    [113] Takajo S, Merriman C C, Vogel S C et al. In-situ EBSD study on the cube texture evolution in 3 wt% Si steel complemented by ex-situ EBSD experiment: from nucleation to grain growth[J]. Acta Materialia, 166, 100-112(2019).

    [114] Yin Y J, Xie H M, He W. In situ SEM-DIC technique and its application to characterize the high-temperature fatigue crack closure effect[J]. Science China Technological Sciences, 63, 265-276(2020).

    [115] Zhang W, Zhu Z K, Zhou C Y et al. Biaxial tensile behavior of commercially pure titanium under various In-plane load ratios and strain rates[J]. Metals, 11, 155(2021).

    [116] Sinha S, Komarasamy M, Wang T H et al. Notch-tensile behavior of Al0.1CrFeCoNi high entropy alloy[J]. Materials Science and Engineering: A, 774, 138918(2020).

    [117] Han Q N, Lei X S, Rui S S et al. Temperature-dependent fatigue response of a Fe44Mn36Co10Cr10 high entropy alloy: a coupled in situ electron microscopy study and crystal plasticity simulation[J]. International Journal of Fatigue, 151, 106385(2021).

    [118] Tasan C C, Hoefnagels J P M, Diehl M et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations[J]. International Journal of Plasticity, 63, 198-210(2014).

    [119] Jin H, Lu W Y, Haldar S et al. Microscale characterization of granular deformation near a crack tip[J]. Journal of Materials Science, 46, 6596-6602(2011).

    [120] Ye Z H, Li C W, Zheng M Y et al. In situ EBSD/DIC-based investigation of deformation and fracture mechanism in FCC- and L12-structured FeCoNiV high-entropy alloys[J]. International Journal of Plasticity, 152, 103247(2022).

    [121] Wright R. Transmission electron microscopy of yeast[J]. Microscopy Research and Technique, 51, 496-510(2000).

    [122] Zhu Y, Espinosa H D. An electromechanical material testing system for in situ electron microscopy and applications[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 14503-14508(2005).

    [123] Wang X D, Mao S C, Zhang J F et al. MEMS device for quantitative in situ mechanical testing in electron microscope[J]. Micromachines, 8, 31(2017).

    [124] Li S, Powell C A, Mathaudhu S et al. Review of recent progress on in situ TEM shear deformation: a retrospective and perspective view[J]. Journal of Materials Science, 57, 12177-12201(2022).

    [126] Agrawal R, Peng B, Espinosa H D. Experimental-computational investigation of ZnO nanowires strength and fracture[J]. Nano Letters, 9, 4177-4183(2009).

    [127] Lu S N, Guo Z Y, Ding W Q et al. In situ mechanical testing of templated carbon nanotubes[J]. Review of Scientific Instruments, 77, 125101(2006).

    [128] Corigliano A, Cacchione F, De Masi B et al. On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale[J]. Meccanica, 40, 485-503(2005).

    [129] Haque M A, Saif M T A. Microscale materials testing using MEMS actuators[J]. Journal of Microelectromechanical Systems, 10, 146-152(2001).

    [130] Espinosa H D, Zhu Y, Moldovan N. Design and operation of a MEMS-based material testing system for nanomechanical characterization[J]. Journal of Microelectromechanical Systems, 16, 1219-1231(2007).

    [131] Hosseinian E, Pierron O N. Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films[J]. Nanoscale, 5, 12532-12541(2013).

    [132] Cao C H, Howe J Y, Perovic D et al. In situ TEM tensile testing of carbon-linked graphene oxide nanosheets using a MEMS device[J]. Nanotechnology, 27, 28LT01(2016).

    [133] Guan W, Lockwood A, Inkson B J et al. A piezoelectric goniometer inside a transmission electron microscope goniometer[J]. Microscopy and Microanalysis, 17, 827-833(2011).

    [134] Tan X, Du T, Shang J K. Piezoelectric in situ transmission electron microscopy technique for direct observations of fatigue damage accumulation in constrained metallic thin films[J]. Applied Physics Letters, 80, 3946-3948(2002).

    [135] Sato T, Ishida T, Nabeya S et al. Nano-scale observation of frictional deformation at Ag single point contact with MEMS-in-TEM setup[J]. Journal of Physics: Conference Series, 258, 012005(2010).

    [136] Yang Y, Fu Z Q, Zhang X et al. In situ TEM mechanical characterization of one-dimensional nanostructures via a standard double-tilt holder compatible MEMS device[J]. Ultramicroscopy, 198, 43-48(2019).

    [137] Bataineh K. Novel in-situ heating transmission electron microscope holder for atomic resolution[J]. Mechanics, 23, 265-272(2017).

    [138] van Huis M A, Young N P, Pandraud G et al. Atomic imaging of phase transitions and morphology transformations in nanocrystals[J]. Advanced Materials, 21, 4992-4995(2009).

    [139] Çiftyürek E, Sabolsky K, Sabolsky E M. Platinum thin film electrodes for high-temperature chemical sensor applications[J]. Sensors and Actuators B: Chemical, 181, 702-714(2013).

    [140] Niu G Q, Gong H M, Zhao C H et al. H2S sensor based on MEMS hotplate and on-chip growth of CuO-SnO2 nanosheets for high response, fast recovery and low power consumption[C], 799-802(2020).

    [141] Niu G Q, Zhao C H, Gong H M et al. A micro-hotplate for mems-based H2S sensor[C], 1153-1156(2019).

    [142] Çiftyürek E, McMillen C D, Sabolsky K et al. Platinum-zirconium composite thin film electrodes for high-temperature micro-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 207, 206-215(2015).

    [143] Zhang J F, Li Y R, Li X C et al. Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten[J]. Nature Communications, 12, 2218(2021).

    [144] Wang Z F, Tang Y F, Zhang L Q et al. In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures[J]. Small, 16, 2001899(2020).

    [145] van Omme J T, Zakhozheva M, Spruit R G et al. Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability[J]. Ultramicroscopy, 192, 14-20(2018).

    [146] Grosso R L, Muccillo E N S, Muche D N F et al. In situ transmission electron microscopy for ultrahigh temperature mechanical testing of ZrO2[J]. Nano Letters, 20, 1041-1046(2020).

    [147] Mele L, Konings S, Dona P et al. A MEMS-based heating holder for the direct imaging of simultaneous in situ heating and biasing experiments in scanning/transmission electron microscopes[J]. Microscopy Research and Technique, 79, 239-250(2016).

    [148] Fawey M H, Chakravadhanula V S K, Reddy M A et al. In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: preparation, prospects, and challenges[J]. Microscopy Research and Technique, 79, 615-624(2016).

    [149] Karakulina O M, Demortière A, Dachraoui W et al. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for Li-ion batteries[J]. Nano Letters, 18, 6286-6291(2018).

    [150] Wang C M. In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view[J]. Journal of Materials Research, 30, 326-339(2015).

    [151] Wheatcroft L, Özkaya D, Cookson J et al. Towards in situ TEM for Li-ion battery research[J]. Energy Procedia, 151, 163-167(2018).

    [152] Gnanasekaran K, Vailonis K M, Jenkins D M et al. In situ monitoring of the seeding and growth of silver metal-organic nanotubes by liquid-cell transmission electron microscopy[J]. ACS Nano, 14, 8735-8743(2020).

    [153] Jo J, Tchoe Y, Yi G C et al. Real-time characterization using in situ RHEED transmission mode and TEM for investigation of the growth behaviour of nanomaterials[J]. Scientific Reports, 8, 1694(2018).

    [154] van den Berg R, Elkjaer C F, Gommes C J et al. Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy[J]. Journal of the American Chemical Society, 138, 3433-3442(2016).

    [155] Zhang Z F, Wang Y, Li H B et al. Atomic-scale observation of vapor-solid nanowire growth via oscillatory mass transport[J]. ACS Nano, 10, 763-769(2016).

    [156] Ma P J, Li A, Wang L H et al. Investigation of deoxidation process of MoO3 using environmental TEM[J]. Materials, 15, 56(2021).

    [157] Ono A, Isobe S, Wang Y M et al. In-situ TEM observation for reaction mechanism in MgH2 hydrogen storage material[J]. Journal of the Japan Institute of Metals, 74, 205-208(2010).

    [158] Yoshida K, Nanbara T, Yamasaki J et al. Oxygen release and structural changes in TiO2 films during photocatalytic oxidation[J]. Journal of Applied Physics, 99, 084908(2006).

    [159] Chen L J, Wu W W. In situ TEM investigation of dynamical changes of nanostructures[J]. Materials Science and Engineering: R: Reports, 70, 303-319(2010).

    [160] Liu M, Zhang X M, Liu L et al. In situ TEM observations of martensite-austenite transformations in a Ni49Ti36Hf15 high temperature shape memory alloy[J]. Journal of Materials Science Letters, 19, 1383-1386(2000).

    [161] Miyamoto M, Ono K, Mori Y et al. Difference between helium retention properties in 316L and 304 stainless steels[J]. Journal of Nuclear Materials, 386/387/388, 181-184(2009).

    [162] Terasawa T O, Kikuchi S, Tezura M et al. Development of 2000 K class high temperature in situ transmission electron microscopy of nanostructured materials via resistive heating[J]. Journal of Nanoscience and Nanotechnology, 17, 2848-2851(2017).

    [163] Yonezawa T, Arai S, Takeuchi H et al. Preparation of naked silver nanoparticles in a TEM column and direct in situ observation of their structural changes at high temperature[J]. Chemical Physics Letters, 537, 65-68(2012).

    [164] Pussi K, Barbiellini B, Ohara K et al. Structural properties of PbTe quantum dots revealed by high-energy X-ray diffraction[J]. Journal of Physics: Condensed Matter, 32, 485401(2020).

    [166] Sun G A, Liu D, Gong J et al. The neutron scattering platform of China Mianyang Research Reactor(CMRR) and recent applications[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 51, 89-99(2021).

    [167] Li N, Wang X, Liu C K. Research development of residual stress measured by neutron diffraction[J]. Failure Analysis and Prevention, 16, 148-154(2021).

    [168] Örnek C, Müller T, Şeşen B M et al. Hydrogen-induced micro-strain evolution in super duplex stainless steel: correlative high-energy X-ray diffraction, electron backscattered diffraction, and digital image correlation[J]. Frontiers in Materials, 8, 793120(2022).

    [169] Geandier G, Thiaudière D, Randriamazaoro R N et al. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response[J]. The Review of Scientific Instruments, 81, 103903(2010).

    [170] Repper J, Niffenegger M, van Petegem S et al. In situ biaxial mechanical testing at the neutron time-of-flight diffractometer POLDI[J]. Materials Science Forum, 768/769, 60-65(2013).

    [171] Hommer G M, Park J S, Brunson Z D et al. A planar biaxial experiment platform for in situ high-energy diffraction studies[J]. Experimental Mechanics, 59, 749-774(2019).

    [172] Van Petegem S, Wagner J, Panzner T et al. In-situ neutron diffraction during biaxial deformation[J]. Acta Materialia, 105, 404-416(2016).

    [173] Bhaskar L K, Kumar G, Srinivasan N et al. Design and development of a miniaturized multiaxial test setup for in situ X-ray diffraction experiments[J]. The Review of Scientific Instruments, 92, 015116(2021).

    [174] Bale H A, Haboub A, MacDowell A A et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1, 600 ℃[J]. Nature Materials, 12, 40-46(2013).

    [175] Zhao Y L, Zhang S Z, Zhao H W et al. Development of a variable temperature mechanical loading device for in situ neutron scattering measurements[J]. Journal of Mechanical Science and Technology, 36, 3939-3947(2022).

    [176] Schmid F, Sommer G, Rappolt M et al. Bidirectional tensile testing cell for in situ small angle X-ray scattering investigations of soft tissue[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 246, 262-268(2006).

    [177] Hakari T, Deguchi M, Mitsuhara K et al. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion-insertion processes[J]. Chemistry of Materials, 29, 4768-4774(2017).

    [178] Meesala Y, Chen C Y, Jena A et al. All-solid-state Li-ion battery using Li1.5Al0.5Ge1.5(PO4)3As electrolyte without polymer interfacial adhesion[J]. The Journal of Physical Chemistry C, 122, 14383-14389(2018).

    [179] Kazyak E, Chen K H, Wood K N et al. Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12[J]. Chemistry of Materials, 29, 3785-3792(2017).

    [180] Xiang Y X, Li X, Cheng Y Q et al. Advanced characterization techniques for solid state lithium battery research[J]. Materials Today, 36, 139-157(2020).

    [181] Cakmak E, Watkins T R, Bunn J R et al. Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen[J]. Metallurgical and Materials Transactions A, 47, 971-980(2016).

    [182] Han B L, Zhang C C, Feng K et al. Additively manufactured high strength and ductility CrCoNi medium entropy alloy with hierarchical microstructure[J]. Materials Science and Engineering: A, 820, 141545(2021).

    [183] Kim J G, Bae J W, Park J M et al. Synergetic strengthening of layered steel sheet investigated using an in situ neutron diffraction tensile test[J]. Scientific Reports, 9, 6829(2019).

    [184] Carl M, Smith J, Wheeler R W et al. High-energy synchrotron radiation X-ray diffraction measurements during in situ aging of a NiTi-15 at. % Hf high temperature shape memory alloy[J]. Materialia, 5, 100220(2019).

    [185] Godard P, Renault P-O, Faurie D et al. Relaxation mechanisms in a gold thin film on a compliant substrate as revealed by X-ray diffraction[J]. Applied Physics Letters, 110, 211901(2017).

    [186] Romano Brandt L, Salvati E, Papadaki C et al. Probing the deformation and fracture properties of Cu/W nano-multilayers by in situ SEM and synchrotron XRD strain microscopy[J]. Surface and Coatings Technology, 320, 158-167(2017).

    [187] Renault P O, Le Bourhis E, Goudeau P et al. Non-equibiaxial deformation of W/Cu nanocomposite thin films on stretchable substrate: effect of loading path[J]. Thin Solid Films, 549, 239-244(2013).

    [188] Wang Y, Dar M I, Ono L K et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%[J]. Science, 365, 591-595(2019).

    [189] Liu X S, Yang W L, Liu Z. Recent progress on synchrotron-based in situ soft X-ray spectroscopy for energy materials[J]. Advanced Materials, 26, 7710-7729(2014).

    Wenjuan Xing, Zhonghan Yu, Changyi Liu, Hongwei Zhao. In-Situ Testing Techniques for Mechanical Properties of Materials: Development and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312015
    Download Citation