Wenjuan Xing, Zhonghan Yu, Changyi Liu, Hongwei Zhao. In-Situ Testing Techniques for Mechanical Properties of Materials: Development and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312015

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 60, Issue 3, 0312015 (2023)

Fig. 1. Schematic diagram of angle of compatible EBSD device
![Stretching table of MTI Instruments[33]](/richHtml/lop/2023/60/3/0312015/img_02.jpg)
Fig. 2. Stretching table of MTI Instruments[33]
![Stretching device of Kammrath & Weiss[34]](/Images/icon/loading.gif)
Fig. 3. Stretching device of Kammrath & Weiss[34]
![Piezoelectric driven medium and low frequency tensile fatigue testing device[39]](/Images/icon/loading.gif)
Fig. 4. Piezoelectric driven medium and low frequency tensile fatigue testing device[39]
![Ultrasonic fatigue SEM system[40]](/Images/icon/loading.gif)
Fig. 5. Ultrasonic fatigue SEM system[40]
![Deformation measurement of tensile samples[43]. (a) Schematic diagram of sample deformation;](/Images/icon/loading.gif)
Fig. 6. Deformation measurement of tensile samples[43]. (a) Schematic diagram of sample deformation;
![Biaxial tensile device[61]](/Images/icon/loading.gif)
Fig. 7. Biaxial tensile device[61]
![SEM-EBSD biaxial tensile device[62]](/Images/icon/loading.gif)
Fig. 8. SEM-EBSD biaxial tensile device[62]
![Tensile-torsional in-situ testing setup[63]](/Images/icon/loading.gif)
Fig. 9. Tensile-torsional in-situ testing setup[63]
![Tensile-bending in-situ testing setup[64]](/Images/icon/loading.gif)
Fig. 10. Tensile-bending in-situ testing setup[64]
![In-situ heating method[68]](/Images/icon/loading.gif)
Fig. 11. In-situ heating method[68]
![SEM/EBSD-compatible laser heating device[73]. (a) Schematic diagram of heating device;](/Images/icon/loading.gif)
Fig. 12. SEM/EBSD-compatible laser heating device[73]. (a) Schematic diagram of heating device;
![In-situ heating device[74]](/Images/icon/loading.gif)
Fig. 13. In-situ heating device[74]
![Heating device produced by Shimadzu Corporation, Japan[75]](/Images/icon/loading.gif)
Fig. 14. Heating device produced by Shimadzu Corporation, Japan[75]
![Hybrid heating unit[76]](/Images/icon/loading.gif)
Fig. 15. Hybrid heating unit[76]
![Schematic diagram of heating unit[77]](/Images/icon/loading.gif)
Fig. 16. Schematic diagram of heating unit[77]
![High-temperature in-situ testing setup[80]](/Images/icon/loading.gif)
Fig. 17. High-temperature in-situ testing setup[80]
![Schematic diagram of internal structure of high-temperature heating module[81]](/Images/icon/loading.gif)
Fig. 18. Schematic diagram of internal structure of high-temperature heating module[81]
![EBSD-compatible in-situ high-temperature stretching device[82]](/Images/icon/loading.gif)
Fig. 19. EBSD-compatible in-situ high-temperature stretching device[82]
![SEM/EBSD in-situ low-temperature stretching device[87]](/Images/icon/loading.gif)
Fig. 20. SEM/EBSD in-situ low-temperature stretching device[87]
![Temperature measurement method of in-situ SEM low-temperature stretching device[88]](/Images/icon/loading.gif)
Fig. 21. Temperature measurement method of in-situ SEM low-temperature stretching device[88]
![In-situ variable temperature tensile loading device[91]](/Images/icon/loading.gif)
Fig. 22. In-situ variable temperature tensile loading device[91]
![In-situ high-temperature tensile testing of failure mechanisms of nickel-based high-temperature alloys at different temperatures[103]](/Images/icon/loading.gif)
Fig. 23. In-situ high-temperature tensile testing of failure mechanisms of nickel-based high-temperature alloys at different temperatures[103]
![In-situ EBSD images of non-deformed high-temperature alloys[110]. (a) EBSD sampling areas; (b), (c), and (d) are IPF, KAM, and GND density maps in xz plane, respevtively; (e), (f), and (g) are IPF, KAM, and GND density maps in xy plane](/Images/icon/loading.gif)
Fig. 24. In-situ EBSD images of non-deformed high-temperature alloys[110]. (a) EBSD sampling areas; (b), (c), and (d) are IPF, KAM, and GND density maps in xz plane, respevtively; (e), (f), and (g) are IPF, KAM, and GND density maps in xy plane
![In-situ EBSD observation of grain growth at different annealing temperatures[113]](/Images/icon/loading.gif)
Fig. 25. In-situ EBSD observation of grain growth at different annealing temperatures[113]
![SEM in-situ three-point bending different strain distribution with grain orientation superimposed[119].](/Images/icon/loading.gif)
Fig. 26. SEM in-situ three-point bending different strain distribution with grain orientation superimposed[119].
![In-situ tensile microstructure characterization of high entropy alloy[120]. (a) EBSD plot of sample at 0% tensile strain; (b) SEM image of sample at 0% strain; (c) DIC plot of sample at 18% tensile strain; (d) SEM image of sample at 18% strain](/Images/icon/loading.gif)
Fig. 27. In-situ tensile microstructure characterization of high entropy alloy[120]. (a) EBSD plot of sample at 0% tensile strain; (b) SEM image of sample at 0% strain; (c) DIC plot of sample at 18% tensile strain; (d) SEM image of sample at 18% strain
![Physical picture of sample rod[125]](/Images/icon/loading.gif)
Fig. 28. Physical picture of sample rod[125]
![TEM in-situ tensile fatigue device[131]](/Images/icon/loading.gif)
Fig. 29. TEM in-situ tensile fatigue device[131]
![Thermally actuated MEMS stretching device[132]](/Images/icon/loading.gif)
Fig. 30. Thermally actuated MEMS stretching device[132]
![Electrostatically driven TEM in-situ testing setup[135]](/Images/icon/loading.gif)
Fig. 31. Electrostatically driven TEM in-situ testing setup[135]
![Schematic diagram of electrostatically driven stretching device[136]](/Images/icon/loading.gif)
Fig. 32. Schematic diagram of electrostatically driven stretching device[136]
![Schematic diagram of TEM in-situ resistance heater[137]](/Images/icon/loading.gif)
Fig. 33. Schematic diagram of TEM in-situ resistance heater[137]
![TEM high-temperature mechanical loading device[143]](/Images/icon/loading.gif)
Fig. 34. TEM high-temperature mechanical loading device[143]
![TEM in-situ MEMS heating device[144]](/Images/icon/loading.gif)
Fig. 35. TEM in-situ MEMS heating device[144]
![Schematic diagram of TEM heating device[145]. (a) MEMS heating device; (b) MEMS heating temperature distribution](/Images/icon/loading.gif)
Fig. 36. Schematic diagram of TEM heating device[145]. (a) MEMS heating device; (b) MEMS heating temperature distribution
![XRD in-situ tensile experimental setup[168]](/Images/icon/loading.gif)
Fig. 37. XRD in-situ tensile experimental setup[168]
![Biaxial tensile device mounted on a synchrotron[169]](/Images/icon/loading.gif)
Fig. 38. Biaxial tensile device mounted on a synchrotron[169]
![Biaxial tensile/compression and low circumference fatigue experimental setup[170]](/Images/icon/loading.gif)
Fig. 39. Biaxial tensile/compression and low circumference fatigue experimental setup[170]
![Planar biaxial loading device[171]](/Images/icon/loading.gif)
Fig. 40. Planar biaxial loading device[171]
![XRD-compatible in-situ biaxial device[172]](/Images/icon/loading.gif)
Fig. 41. XRD-compatible in-situ biaxial device[172]
![In-situ XRD biaxial loading device[173]](/Images/icon/loading.gif)
Fig. 42. In-situ XRD biaxial loading device[173]
![Synchrotron radiation XRD in-situ ultra-high temperature tensile testing device[174]](/Images/icon/loading.gif)
Fig. 43. Synchrotron radiation XRD in-situ ultra-high temperature tensile testing device[174]
![Neutron in-situ measurement variable temperature uniaxial stretching device[175]](/Images/icon/loading.gif)
Fig. 44. Neutron in-situ measurement variable temperature uniaxial stretching device[175]
![Variable temperature ambient chamber[175]](/Images/icon/loading.gif)
Fig. 45. Variable temperature ambient chamber[175]
|
Table 1. Commercial in-situ mechanical properties testing devices
|
Table 2. In-situ cryogenic devices
|
Table 3. Summary of in-situ testing techniques for mechanical properties of materials

Set citation alerts for the article
Please enter your email address