• Laser & Optoelectronics Progress
  • Vol. 60, Issue 3, 0312015 (2023)
Wenjuan Xing1, Zhonghan Yu1, Changyi Liu2,*, and Hongwei Zhao1,**
Author Affiliations
  • 1School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, Jilin, China
  • 2Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
  • show less
    DOI: 10.3788/LOP223365 Cite this Article Set citation alerts
    Wenjuan Xing, Zhonghan Yu, Changyi Liu, Hongwei Zhao. In-Situ Testing Techniques for Mechanical Properties of Materials: Development and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312015 Copy Citation Text show less
    Schematic diagram of angle of compatible EBSD device
    Fig. 1. Schematic diagram of angle of compatible EBSD device
    Stretching table of MTI Instruments[33]
    Fig. 2. Stretching table of MTI Instruments[33]
    Stretching device of Kammrath & Weiss[34]
    Fig. 3. Stretching device of Kammrath & Weiss[34]
    Piezoelectric driven medium and low frequency tensile fatigue testing device[39]
    Fig. 4. Piezoelectric driven medium and low frequency tensile fatigue testing device[39]
    Ultrasonic fatigue SEM system[40]
    Fig. 5. Ultrasonic fatigue SEM system[40]
    Deformation measurement of tensile samples[43]. (a) Schematic diagram of sample deformation;
    Fig. 6. Deformation measurement of tensile samples[43]. (a) Schematic diagram of sample deformation;
    Biaxial tensile device[61]
    Fig. 7. Biaxial tensile device[61]
    SEM-EBSD biaxial tensile device[62]
    Fig. 8. SEM-EBSD biaxial tensile device[62]
    Tensile-torsional in-situ testing setup[63]
    Fig. 9. Tensile-torsional in-situ testing setup[63]
    Tensile-bending in-situ testing setup[64]
    Fig. 10. Tensile-bending in-situ testing setup[64]
    In-situ heating method[68]
    Fig. 11. In-situ heating method[68]
    SEM/EBSD-compatible laser heating device[73]. (a) Schematic diagram of heating device;
    Fig. 12. SEM/EBSD-compatible laser heating device[73]. (a) Schematic diagram of heating device;
    In-situ heating device[74]
    Fig. 13. In-situ heating device[74]
    Heating device produced by Shimadzu Corporation, Japan[75]
    Fig. 14. Heating device produced by Shimadzu Corporation, Japan[75]
    Hybrid heating unit[76]
    Fig. 15. Hybrid heating unit[76]
    Schematic diagram of heating unit[77]
    Fig. 16. Schematic diagram of heating unit[77]
    High-temperature in-situ testing setup[80]
    Fig. 17. High-temperature in-situ testing setup[80]
    Schematic diagram of internal structure of high-temperature heating module[81]
    Fig. 18. Schematic diagram of internal structure of high-temperature heating module[81]
    EBSD-compatible in-situ high-temperature stretching device[82]
    Fig. 19. EBSD-compatible in-situ high-temperature stretching device[82]
    SEM/EBSD in-situ low-temperature stretching device[87]
    Fig. 20. SEM/EBSD in-situ low-temperature stretching device[87]
    Temperature measurement method of in-situ SEM low-temperature stretching device[88]
    Fig. 21. Temperature measurement method of in-situ SEM low-temperature stretching device[88]
    In-situ variable temperature tensile loading device[91]
    Fig. 22. In-situ variable temperature tensile loading device[91]
    In-situ high-temperature tensile testing of failure mechanisms of nickel-based high-temperature alloys at different temperatures[103]
    Fig. 23. In-situ high-temperature tensile testing of failure mechanisms of nickel-based high-temperature alloys at different temperatures[103]
    In-situ EBSD images of non-deformed high-temperature alloys[110]. (a) EBSD sampling areas; (b), (c), and (d) are IPF, KAM, and GND density maps in xz plane, respevtively; (e), (f), and (g) are IPF, KAM, and GND density maps in xy plane
    Fig. 24. In-situ EBSD images of non-deformed high-temperature alloys[110]. (a) EBSD sampling areas; (b), (c), and (d) are IPF, KAM, and GND density maps in xz plane, respevtively; (e), (f), and (g) are IPF, KAM, and GND density maps in xy plane
    In-situ EBSD observation of grain growth at different annealing temperatures[113]
    Fig. 25. In-situ EBSD observation of grain growth at different annealing temperatures[113]
    SEM in-situ three-point bending different strain distribution with grain orientation superimposed[119].
    Fig. 26. SEM in-situ three-point bending different strain distribution with grain orientation superimposed[119].
    In-situ tensile microstructure characterization of high entropy alloy[120]. (a) EBSD plot of sample at 0% tensile strain; (b) SEM image of sample at 0% strain; (c) DIC plot of sample at 18% tensile strain; (d) SEM image of sample at 18% strain
    Fig. 27. In-situ tensile microstructure characterization of high entropy alloy[120]. (a) EBSD plot of sample at 0% tensile strain; (b) SEM image of sample at 0% strain; (c) DIC plot of sample at 18% tensile strain; (d) SEM image of sample at 18% strain
    Physical picture of sample rod[125]
    Fig. 28. Physical picture of sample rod[125]
    TEM in-situ tensile fatigue device[131]
    Fig. 29. TEM in-situ tensile fatigue device[131]
    Thermally actuated MEMS stretching device[132]
    Fig. 30. Thermally actuated MEMS stretching device[132]
    Electrostatically driven TEM in-situ testing setup[135]
    Fig. 31. Electrostatically driven TEM in-situ testing setup[135]
    Schematic diagram of electrostatically driven stretching device[136]
    Fig. 32. Schematic diagram of electrostatically driven stretching device[136]
    Schematic diagram of TEM in-situ resistance heater[137]
    Fig. 33. Schematic diagram of TEM in-situ resistance heater[137]
    TEM high-temperature mechanical loading device[143]
    Fig. 34. TEM high-temperature mechanical loading device[143]
    TEM in-situ MEMS heating device[144]
    Fig. 35. TEM in-situ MEMS heating device[144]
    Schematic diagram of TEM heating device[145]. (a) MEMS heating device; (b) MEMS heating temperature distribution
    Fig. 36. Schematic diagram of TEM heating device[145]. (a) MEMS heating device; (b) MEMS heating temperature distribution
    XRD in-situ tensile experimental setup[168]
    Fig. 37. XRD in-situ tensile experimental setup[168]
    Biaxial tensile device mounted on a synchrotron[169]
    Fig. 38. Biaxial tensile device mounted on a synchrotron[169]
    Biaxial tensile/compression and low circumference fatigue experimental setup[170]
    Fig. 39. Biaxial tensile/compression and low circumference fatigue experimental setup[170]
    Planar biaxial loading device[171]
    Fig. 40. Planar biaxial loading device[171]
    XRD-compatible in-situ biaxial device[172]
    Fig. 41. XRD-compatible in-situ biaxial device[172]
    In-situ XRD biaxial loading device[173]
    Fig. 42. In-situ XRD biaxial loading device[173]
    Synchrotron radiation XRD in-situ ultra-high temperature tensile testing device[174]
    Fig. 43. Synchrotron radiation XRD in-situ ultra-high temperature tensile testing device[174]
    Neutron in-situ measurement variable temperature uniaxial stretching device[175]
    Fig. 44. Neutron in-situ measurement variable temperature uniaxial stretching device[175]
    Variable temperature ambient chamber[175]
    Fig. 45. Variable temperature ambient chamber[175]
    CompanyProduct type and modelPictureMain technical specification
    Deben,UK2 kN vertical three-point bending device[49]Function:three-point four-point bending;compatible with SEM and OM;maximum load:2 kN;rate:0.05-5 mm/min
    Deben,UK5 kN tensile compression and bending device[50]Function:tension and compression,horizontal bending;compatible with SEM,OM;maximum load:5 kN;speed:0.005-50 mm/min;temperature range:253-433 K
    Deben,UK5 kN in-situ fatigue device[51]Function:tension and compression,fatigue;SEM compatible;maximum load:5 kN;speed:0.005-6 mm/min;can be equipped with heating table
    Gatan,USAMICROTEST 2000E in-situ stretching device[52]Function:single-axis tension and compression;load:max. 2 kN;stroke:10 mm;speed:0.033-0.4 mm/min
    Qiyue,ChinaIn-situ high-temperature fatigue device[53]Function:high temperature creep fatigue;SEM compatible;maximum load:2 kN;temperature:room temperature ~1273 K
    Qiyue,ChinaMINI-MTSdevice[54]Function:stretching and compression,three-point bending;compatible with SEM,EBSD;maximum load:10 kN;speed:0.001-0.1 mm/min;can be equipped with heating table
    Kammrath & Weiss,GermanyIn-situ tensile/compression testing device[55]Function:single-axis stretching and compression;SEM compatible;maximum load:10 kN;rate:0.006-1.2 mm/min;temperature:room temperature ~1273 K
    Kammrath & Weiss,Germany200 N in-situ bending testdevice[56]Function:Three- or four-point bending;SEM compatible;speed:0.012-1.2 mm/min
    Table 1. Commercial in-situ mechanical properties testing devices
    CompanyProduct type and modelPictureMain technical specification
    Qiyue,ChinaLiquid nitrogen cryogenic table[84]Temperature range:140-423 K;cooling rate:>20 K/min
    Gatan,USAGatan C1 series liquid nitrogen cryogenic table[85]Temperature range:88-673 K;cooling rate:>20 K/min
    Gatan,USACF302 liquid helium cryogenic table[85]Temperature range:4-140 K;cooling rate:>3 K/min
    Deben,UKEnhanced low-temperature table[86]Temperature range:248-433 K;maximum cooling rate:>20 K/min
    Deben,UKUltra-low-temperature cryogenic table[86]Temperature range:223-323 K;maximum cooling rate:>20 K/min
    Table 2. In-situ cryogenic devices
    Microscopic instrumentTest contentCharacteristicKey technology
    SEMSEM:surface microstructure morphology;EBSD:lattice orientation;EDS:elemental type and content analysisLarge field of view,large depth of field,large cavity space,good compatibility,and low priceSpatial compatibility,functional compatibility,vacuum compatibility,electrical,thermal,and magnetic compatibility,imaging distance,and angle compatibility
    TEMInternal organization and morphology and crystal structure observationHigh resolution,difficult specimen preparation,small cavity space,poor compatibility,and high cost
    Diffraction imagingMaterial internal microstructure,crystal structure,and residual stress measurementHigh spatial resolution,good compatibility,complex instrument structure,large size,and expensive price
    Table 3. Summary of in-situ testing techniques for mechanical properties of materials
    Wenjuan Xing, Zhonghan Yu, Changyi Liu, Hongwei Zhao. In-Situ Testing Techniques for Mechanical Properties of Materials: Development and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312015
    Download Citation