• Acta Optica Sinica
  • Vol. 43, Issue 6, 0600001 (2023)
Zeliang Zhang, Pengfei Qi, Lanjun Guo, Nan Zhang, Lie Lin, and Weiwei Liu*
Author Affiliations
  • Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • show less
    DOI: 10.3788/AOS221632 Cite this Article Set citation alerts
    Zeliang Zhang, Pengfei Qi, Lanjun Guo, Nan Zhang, Lie Lin, Weiwei Liu. Review on Super-Resolution Near-Field Terahertz Imaging Methods[J]. Acta Optica Sinica, 2023, 43(6): 0600001 Copy Citation Text show less
    References

    [1] Wang H B, Yang Z B, Li D D et al. Imaging biological samples using far- and near-filed THz microscopy[C](2019).

    [2] Ma J J, Shrestha R, Adelberg J et al. Security and eavesdropping in terahertz wireless links[J]. Nature, 563, 89-93(2018).

    [3] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [4] Seo C, Kim T T. Terahertz near-field spectroscopy for various applications[J]. Journal of the Korean Physical Society, 81, 549-561(2022).

    [5] Bhadra C M, Khanh Truong V, Pham V T H et al. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings[J]. Scientific Reports, 5, 16817(2015).

    [6] Buron J D, MacKenzie D M A, Petersen D H et al. Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate[J]. Optics Express, 23, 30721-30729(2015).

    [7] Davoyan A R, Popov V V, Nikitov S A. Tailoring terahertz near-field enhancement via two-dimensional plasmons[J]. Physical Review Letters, 108, 127401(2012).

    [8] Docherty C J, Parkinson P, Joyce H J et al. Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition[J]. ACS Nano, 8, 11147-11153(2014).

    [9] Yang X, Zhao X, Yang K et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 34, 810-824(2016).

    [10] D′Arco A, di Fabrizio M D, Dolci V et al. THz pulsed imaging in biomedical applications[J]. Condensed Matter, 5, 25(2020).

    [11] Geng G S, Dai G B, Li D D et al. Imaging brain tissue slices with terahertz near-field microscopy[J]. Biotechnology Progress, 35, e2741(2019).

    [12] Shiraga K, Suzuki T, Kondo N et al. Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy[J]. Applied Physics Letters, 106, 253701(2015).

    [13] Guerboukha H, Nallappan K, Skorobogatiy M. Toward real-time terahertz imaging[J]. Advances in Optics and Photonics, 10, 843-938(2018).

    [14] Wang Z M, Qiao J, Zhao S Q et al. Recent progress in terahertz modulation using photonic structures based on two-dimensional materials[J]. InfoMat, 3, 1110-1133(2021).

    [15] Shao D X, Fu Z L, Tan Z Y et al. Research progress on terahertz quantum-well photodetector and its application[J]. Frontiers in Physics, 9, 751018(2021).

    [16] Mitrofanov O. Terahertz near-field microscopy: science, technology, and insights[EB/OL]. https://discovery.ucl.ac.uk/id/eprint/1573073/1/Mitrofanov_document_compressed.pdf

    [17] Hunsche S, Koch M, Brener I et al. THz near-field imaging[J]. Optics Communications, 150, 22-26(1998).

    [18] Berta M, Kužel P, Kadlec F. Study of responsiveness of near-field terahertz imaging probes[J]. Journal of Physics D: Applied Physics, 42, 155501(2009).

    [19] Yu T, Zuo X, Liu W W et al. 0.1 THz super-resolution imaging based on 3D printed confocal waveguides[J]. Optics Communications, 459, 124896(2020).

    [20] Wang N, Zhang X X, Liang J et al. Novel configuration of aperture-type terahertz near-field imaging probe[J]. Journal of Physics D: Applied Physics, 53, 295102(2020).

    [21] Nguyen T D, Vardeny Z V, Nahata A. Concentration of terahertz radiation through a conically tapered aperture[J]. Optics Express, 18, 25441-25448(2010).

    [22] Ishihara K, Ikari T, Minamide H et al. Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture[J]. Japanese Journal of Applied Physics, 44, L929-L931(2005).

    [23] Chen Q, Jiang Z, Xu G X et al. Near-field terahertz imaging with a dynamic aperture[J]. Optics Letters, 25, 1122-1124(2000).

    [24] Hornett S M, Stantchev R I, Vardaki M Z et al. Subwavelength terahertz imaging of graphene photoconductivity[J]. Nano Letters, 16, 7019-7024(2016).

    [25] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, 1600190(2016).

    [26] Chen S C, Du L H, Meng K et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 44, 21-24(2018).

    [27] Zhao J Y, Chu W, Guo L J et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air[J]. Scientific Reports, 4, 3880(2014).

    [28] Wang X K, Ye J S, Sun W F et al. Terahertz near-field microscopy based on an air-plasma dynamic aperture[J]. Light: Science & Applications, 11, 129(2022).

    [29] Maier S A, Andrews S R, Martín-Moreno L et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 97, 176805(2006).

    [30] Martin-Cano D, Nesterov M L, Fernandez-Dominguez A I et al. Domino plasmons for subwavelength terahertz circuitry[J]. Optics Express, 18, 754-764(2010).

    [31] Jung J, García-Vidal F J, Martín-Moreno L et al. Holey metal films make perfect endoscopes[J]. Physical Review B, 79, 153407(2009).

    [32] Jung J, Martín-Moreno L, García-Vidal F J. Light transmission properties of holey metal films in the metamaterial limit: effective medium theory and subwavelength imaging[J]. New Journal of Physics, 11, 123013(2009).

    [33] Tiejun H, Tang H H, Tan Y H et al. Terahertz super-resolution imaging based on subwavelength metallic grating[J]. IEEE Transactions on Antennas and Propagation, 67, 3358-3365(2019).

    [34] Ikonen P, Simovski C, Tretyakov S et al. Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime[J]. Applied Physics Letters, 91, 104102(2007).

    [35] Tuniz A, Kaltenecker K J, Fischer B M et al. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances[J]. Nature Communications, 4, 2706(2013).

    [36] Li P N, Taubner T. Broadband subwavelength imaging using a tunable graphene-lens[J]. ACS Nano, 6, 10107-10114(2012).

    [37] Tang H H, Huang T J, Liu J Y et al. Tunable terahertz deep subwavelength imaging based on a graphene monolayer[J]. Scientific Reports, 7, 46283(2017).

    [38] Liu J Y, Tiejun H, Liu P K. Terahertz super-resolution imaging using four-wave mixing in graphene[J]. Optics Letters, 43, 2102-2105(2018).

    [39] Mitrofanov O, Brener I, Harel R et al. Terahertz near-field microscopy based on a collection mode detector[J]. Applied Physics Letters, 77, 3496-3498(2000).

    [40] Wächter M, Nagel M, Kurz H. Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution[J]. Applied Physics Letters, 95, 041112(2009).

    [41] Kawano Y, Ishibashi K. An on-chip near-field terahertz probe and detector[J]. Nature Photonics, 2, 618-621(2008).

    [42] Bhattacharya A, Gómez Rivas J. Full vectorial mapping of the complex electric near-fields of THz resonators[J]. APL Photonics, 1, 086103(2016).

    [43] Zang X F, Xu W W, Gu M et al. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging[J]. Advanced Optical Materials, 8, 1901342(2020).

    [44] Maissen C, Chen S, Nikulina E et al. Probes for ultrasensitive THz nanoscopy[J]. ACS Photonics, 6, 1279-1288(2019).

    [45] Zenhausern F, O′Boyle M P, Wickramasinghe H K. Apertureless near-field optical microscope[J]. Applied Physics Letters, 65, 1623-1625(1994).

    [46] Schnell M, Carney P S, Hillenbrand R. Synthetic optical holography for rapid nanoimaging[J]. Nature Communications, 5, 3499(2014).

    [47] Deutsch B, Schnell M, Hillenbrand R et al. Synthetic optical holography with nonlinear-phase reference[J]. Optics Express, 22, 26621-26634(2014).

    [48] Ocelic N, Huber A, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy[J]. Applied Physics Letters, 89, 101124(2006).

    [49] Cocker T L, Jelic V, Gupta M et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 7, 620-625(2013).

    [50] Yoshida S, Arashida Y, Hirori H et al. Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations[J]. ACS Photonics, 8, 315-323(2021).

    [51] Jelic V, Iwaszczuk K, Nguyen P H et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 13, 591-598(2017).

    [52] Deng Y T, McKinney J A, George D K et al. Near-field stationary sample terahertz spectroscopic polarimetry for biomolecular structural dynamics determination[J]. ACS Photonics, 8, 658-668(2021).

    [53] Eisele M, Cocker T L, Huber M A et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution[J]. Nature Photonics, 8, 841-845(2014).

    [54] Moon K, Park H, Kim J et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 15, 549-552(2015).

    [55] Huber A J, Keilmann F, Wittborn J et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices[J]. Nano Letters, 8, 3766-3770(2008).

    [56] Chen X Z, Liu X, Guo X D et al. THz near-field imaging of extreme subwavelength metal structures[J]. ACS Photonics, 7, 687-694(2020).

    [57] Pizzuto A, Castro-Camus E, Wilson W et al. Nonlocal time-resolved terahertz spectroscopy in the near field[J]. ACS Photonics, 8, 2904-2911(2021).

    Zeliang Zhang, Pengfei Qi, Lanjun Guo, Nan Zhang, Lie Lin, Weiwei Liu. Review on Super-Resolution Near-Field Terahertz Imaging Methods[J]. Acta Optica Sinica, 2023, 43(6): 0600001
    Download Citation