• Infrared and Laser Engineering
  • Vol. 49, Issue 11, 20201044 (2020)
Yong Fang1,2, Bincai Cao1,2,*, Li Gao1,2, Haiyan Hu1,2, and Zhenzhi Jiang1,2
Author Affiliations
  • 1State Key Laboratory of Geo-information Engineering, Xi’an 710054, China
  • 2Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China
  • show less
    DOI: 10.3788/IRLA20201044 Cite this Article
    Yong Fang, Bincai Cao, Li Gao, Haiyan Hu, Zhenzhi Jiang. Development and application of lidar mapping satellite[J]. Infrared and Laser Engineering, 2020, 49(11): 20201044 Copy Citation Text show less
    References

    [1] Song Li. Recent progress of spaceborne laser altimeter system. Optics and Optoelectronic Technology, 2, 4-6(2004).

    [2] Guoyuan Li, Xinming Tang. Analysis and validation of ZY-3 02 satellite laser altimetry data. Acta Geodaetica et Cartographica Sinica, 46, 1939-1949(2017).

    [3] Chen Weibiao, Hou Xia. Laser in space application [M]. Beijing: National Defense Industry Press, 2016. (in Chinese)

    [4] Guo Qinhua, Su Yanjun, Hu Tianyu, et al. LiDAR Principles, Processing Applications in Fest Ecology [M]. Beijing: Higher Education Press, 2018. (in Chinese)

    [5] Aiyan Guo, Jun Dai, Chengguang Zhao. Design and on-orbit validation of GF-7 satellite laser altimeter. Spacecraft Engineering, 39, 43-48(2020).

    [6] T Markus, T Neumann, A Martino. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260-273(2017).

    [7] Wenmin Hu, Kaichang Di, Zongyu Yue. Crossover analysis and adjustment for Chang’E-1 laser altimeter data. Acta Geodaetica et Cartographica Sinica, 42, 218-224(2013).

    [8] Xinming Tang, Junfeng Xie, Xinke Fu. ZY3-02 laser altimeter on-orbit geometrical calibration and test. Acta Geodaetica et Cartographica Sinica, 46, 714-723(2017).

    [9] Genghua Huang, Yuxing Ding, Jincai Wu. Design and implementation of key technology of GF-7 satellite laser altimeter subsystem. Spacecraft Engineering, 68, 68-73(2020).

    [10] Li Guoyuan. Earth observing satellite laser altimeter data processing method engineer practice [D]. Wuhan: Wuhan University, 2017. (in Chinese)

    [11] G Sun, K J Ranson, V I Kharuk. Validation of surface height from shuttle radar topography mission using shuttle laser Altimeter. Remote Sensing of Environment, 88, 401-411(2003).

    [12] M Simard, N Pinto, J Fisher. Mapping forest Canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116, 1-12(2011).

    [13] Scott B L, Tim R, Tayl T, et al. Algithm theetical basis document (ATBD) f GEDI wavefm geolocation f L1 L2 products. [EBOL]. (2019115) [20200820]. http:lpdaac.usgs.govdocuments579GEDI_WFGEO_ATBD_v1.0.pdf.

    [14] Yu A W, Krainak M A, Stephen M A, et al. Spaceflight laser development f future remote sensing application [C]SPIE, 2011, 8182: 818204.

    [15] T A Neumann, A J Martino, T Markus. The Ice, Cloud, and Land Elevation Satellite–2 mission: A global geolocated photon product derived from the advanced topographic laser altimeter system. Remote Sensing of Environment, 233, 111325(2019).

    [16] Neumann T, Brenner A, Hancock D, et al. NASA. Ice, Cloud, L Elevation Satellite (ICESat2) Algithm Theetical Basis Document (ATBD) f global geolocated photons ATL03 [EBOL]. (20191015) [20200825]. https:icesat2.gsfc.nasa.govsitesdefaultfilespage_filesICESat2_ATL03_ATBD_r001.pdf.

    [17] Neuenschwer A, Pitts K. ICE, CLOUD, L Elevation Satellite (ICESat2) Algithm Theetical Basis Document (ATBD) f LVegetation Alongtrack products (ATL08) [EBOL]. (2019915) [20200825]. https:icesat2.gsfcnasa.govsitesdefaultfilespage_filesICESat2_ATL08_ATBD_r001_0.pdf.

    [18] Bincai Cao, Yong Fang, Zhengzhi Jiang. Implementation and accuracy evaluation of ICESat-2 ATL08 denoising algorithms. Bulletin of Surveying and Mapping, 0, 25-30(2020).

    [19] A Neuenschwander, K Pitts. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sensing of Environment, 221, 247-259(2019).

    [20] Feng Xie, Gui Yang, Rong Shu. An adaptive directional filter for photon counting lidar point cloud data. J Infrared Millim Waves, 36, 107-113(2017).

    [21] X Zhu, S Nie, C Wang. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting lidar data. Remote Sensing, 10, 1-23(2018).

    [22] Y M Nan, Z H Feng, E H Liu. Iterative pointing angle calibration method for the spaceborne photon-counting laser altimeter based on small-range terrain matching. Remote Sensing, 11, 2158(2019).

    [23] S B Luthcke, D D Rowlands, T A Williams. Reduction of ICESat systematic geolocation errors and the impact on ice sheet elevation change detection. Geophysical Research Letters, 32, 1-4(2005).

    [24] K M Brunt, T A Neumann, B E Smith. Assessment of ICESat‐2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters, 46, 13072-13078(2019).

    [25] Bincai Cao, Yong Fang, Li Gao. Verification of ICESat-2/ATLAS laser altimetry data accuracy using airborne point cloud. Journal of Geomatics Science and Technology, 37, 50-55(2020).

    [26] A L Neuenschwander, L A Magruder. Canopy and terrain height retrievals with ICESat-2: A first look. Remote Sensing, 11, 1721(2019).

    [27] L Yue, H Shen, L Zhang. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 20-34(2017).

    [28] X Wang, D M Holland, G H Gudmundsson. Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antarctica. Remote Sensing of Environment, 206, 218-230(2018).

    [29] L L Narine, S C Popescu, Lonesome M and. Synergy of ICESat-2 and landsat for mapping forest aboveground Biomass with deep learning. Remote Sensing, 11, 1503(2019).

    [30] B C Cao, Z G Qiu, S L Zhu. Shallow water bathymetry through two-medium photogrammetry using high resolution satellite imagery. Acta Geodaetica et Cartographica Sinica, 45, 952-963(2016).

    [31] N Forfinski-Sarkozi, P Christopher. Analysis of MABEL bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS. Remote Sensing, 8, 772(2016).

    [32] C E Parrish, L A Magruder, A L Neuenschwander. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS's bathymetric mapping performance. Remote Sensing, 11, 1634(2019).

    CLP Journals

    [1] Xiangying E, Guangyao Dai, Songhua Wu. ICESat-2 ATL03 data preprocessing and correction method[J]. Infrared and Laser Engineering, 2021, 50(6): 20211032

    [2] Jun Hui, Hongzhou Chai, Minzhi Xiang, Zhenqiang Du, Kaidi Jin. Detection performance of spaceborne photon-counting LiDAR based on quantum enhancement[J]. Infrared and Laser Engineering, 2023, 52(4): 20220469

    [3] Guoyuan Li, Xinming Tang, Ping Zhou, Jiyi Chen, Zhao Liu, Xianhui Dou, Xiaoqing Zhou, Xia Wang. Laser altimetry data processing and combined surveying application of ZY3-03 satellite[J]. Infrared and Laser Engineering, 2022, 51(5): 20210356

    [4] Siao Zhu, Guoyuan Li, Jinquan Guo, Kun Zhang, Shuaitai Zhang, Liang Pei. Comparison and analysis of high precision DEM production and quality in typical glacier regions of domestic stereometric mapping satellites[J]. Infrared and Laser Engineering, 2023, 52(10): 20230231

    Yong Fang, Bincai Cao, Li Gao, Haiyan Hu, Zhenzhi Jiang. Development and application of lidar mapping satellite[J]. Infrared and Laser Engineering, 2020, 49(11): 20201044
    Download Citation