• Photonics Research
  • Vol. 12, Issue 1, 70 (2024)
Mengdi Luo1、†, Jisen Wen1、†, Pengcheng Ma1, Qiuyuan Sun1, Xianmeng Xia1, Gangyao Zhan1, Zhenyao Yang1, Liang Xu1, Dazhao Zhu1、4、*, Cuifang Kuang1、2、3、5、*, and Xu Liu2
Author Affiliations
  • 1Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311100, China
  • 2State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
  • 4e-mail: zhudz@zhejianglab.com
  • 5e-mail: cfkuang@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.499405 Cite this Article Set citation alerts
    Mengdi Luo, Jisen Wen, Pengcheng Ma, Qiuyuan Sun, Xianmeng Xia, Gangyao Zhan, Zhenyao Yang, Liang Xu, Dazhao Zhu, Cuifang Kuang, Xu Liu. Three-dimensional nanoscale vortex line visualization and chiral nanostructure fabrication of tightly focused multi-vortex beams via direct laser writing[J]. Photonics Research, 2024, 12(1): 70 Copy Citation Text show less
    References

    [1] J. F. Nye, M. V. Berry. Dislocations in wave trains. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 336, 165-190(1974).

    [2] L. Allen, M. W. Beijersbergen, R. J. Spreeuw. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [3] F. Yue, D. Wen, C. Zhang. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv. Mater., 29, 1603838(2017).

    [4] T. Lei, M. Zhang, Y. Li. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [5] T. Kuga, Y. Torii, N. Shiokawa. Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett., 78, 4713-4716(1997).

    [6] S. Oemrawsingh, A. Aiello, E. Eliel. How to observe high-dimensional two-photon entanglement with only two detectors. Phys. Rev. Lett., 92, 217901(2004).

    [7] S. Oemrawsingh, X. Ma, D. Voigt. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett., 95, 240501(2005).

    [8] E. Rittweger, K. Y. Han, S. E. Irvine. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics, 3, 144-147(2009).

    [9] J. Hanne, H. J. Falk, F. Görlitz. STED nanoscopy with fluorescent quantum dots. Nat. Commun., 6, 7127(2015).

    [10] G. Vicidomini, P. Bianchini, A. Diaspro. STED super-resolved microscopy. Nat. Methods, 15, 173-182(2018).

    [11] M. R. Dennis, R. P. King, B. Jack. Isolated optical vortex knots. Nat. Phys., 6, 118-121(2010).

    [12] L. Wang, W. Zhang, H. Yin. Ultrasmall optical vortex knots generated by spin-selective metasurface holograms. Adv. Opt. Mater., 7, 1900263(2019).

    [13] S. J. Tempone-Wiltshire, S. P. Johnstone, K. Helmerson. Optical vortex knots - one photon at a time. Sci. Rep., 6, 24463(2016).

    [14] J. Leach, M. R. Dennis, J. Courtial. Laser beams: knotted threads of darkness. Nature, 432, 165(2004).

    [15] K. O’Holleran, F. Flossmann, M. R. Dennis. Methodology for imaging the 3D structure of singularities in scalar and vector optical fields. J. Opt. A, 11, 094020(2009).

    [16] J. Zhong, S. Qi, S. Liu. Accurate and rapid measurement of optical vortex links and knots. Opt. Lett., 44, 3849-3852(2019).

    [17] D. Gonzalez-Hernandez, S. Varapnickas, A. Bertoncini. Micro-optics 3D printed via multi-photon laser lithography. Adv. Opt. Mater., 11, 2201701(2022).

    [18] A. Balena, M. Bianco, F. Pisanello. Recent advances on high-speed and holographic two-photon direct laser writing. Adv. Funct. Mater., 33, 2211773(2023).

    [19] I. Bernardeschi, M. Ilyas, L. Beccai. A review on active 3D microstructures via direct laser lithography. Adv. Intell. Syst., 3, 2100051(2021).

    [20] H. Wang, W. Zhang, D. Ladika. Two-photon polymerization lithography for optics and photonics: Fundamentals, materials, technologies, and applications. Adv. Funct. Mater., 33, 2214211(2023).

    [21] D. Zhu, L. Xu, C. Ding. Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography. Adv. Photon., 4, 066002(2022).

    [22] T. C. Chong, M. H. Hong, L. P. Shi. Laser precision engineering: from microfabrication to nanoprocessing. Laser Photon. Rev., 4, 123-143(2010).

    [23] X. Lu, X. Wang, S. Wang. Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams. Nat. Commun., 14, 1422(2023).

    [24] D. Pan, S. Liu, J. Li. Rapid fabrication of 3D chiral microstructures by single exposure of interfered femtosecond vortex beams and capillary-force-assisted self-assembly. Adv. Funct. Mater., 32, 2106917(2021).

    [25] Y. Hu, H. Yuan, S. Liu. Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force. Adv. Mater., 32, e2002356(2020).

    [26] H. Lin, M. Gu. Creation of diffraction-limited non-airy multifocal arrays using a spatially shifted vortex beam. Appl. Phys. Lett., 102, 084103(2013).

    [27] S. J. Zhang, Y. Li, Z. P. Liu. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Appl. Phys. Lett., 105, 061101(2014).

    [28] L. Yang, D. Qian, C. Xin. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Opt. Lett., 42, 743-746(2017).

    [29] J. Wen, Q. Sun, M. Luo. Fabrication of chiral 3D microstructure using tightly focused multiramp helico-conical optical beams. Micromachines, 13, 1771(2022).

    [30] H. Z. Cao, M. L. Zheng, X. Z. Dong. Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Appl. Phys. Lett., 102, 201108(2013).

    [31] C. Cao, Y. Qiu, L. Guan. Dip-in photoresist for photoinhibited two-photon lithography to realize high-precision direct laser writing on wafer. ACS Appl. Mater. Interfaces, 14, 31332-31342(2022).

    [32] G. Indebetouw. Optical vortices and their propagation. J. Mod. Opt., 40, 73-87(1993).

    [33] Z. Chen, J. Pu, D. Zhao. Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices. Phys. Lett. A, 375, 2958-2963(2011).

    [34] M. Chen, F. S. Roux. Accelerating the annihilation of an optical vortex dipole in a Gaussian beam. J. Opt. Soc. Am. A, 25, 1279-1286(2008).

    [35] S. G. Reddy, S. Prabhakar, A. Aadhi. Propagation of an arbitrary vortex pair through an astigmatic optical system and determination of its topological charge. J. Opt. Soc. Am. A, 31, 1295-1302(2014).

    [36] X. Zhao, X. Pang, J. Zhang. Transverse focal shift in vortex beams. IEEE Photon. J., 10, 6500417(2018).

    [37] B. K. Singh, M. Bahl, D. S. Mehta. Study of internal energy flows in dipole vortex beams by knife edge test. Opt. Commun., 293, 15-21(2013).

    [38] J. Wen, B. Gao, G. Zhu. Precise position and angular control of optical trapping and manipulation via a single vortex-pair beam. Opt. Lasers Eng., 148, 106773(2022).

    [39] Z. Mei, Y. Mao, J. Wang. Spatial correlated vortex arrays. Opt. Express, 31, 727-736(2022).

    [40] M. Neugebauer, P. Banzer, T. Bauer. Geometric spin Hall effect of light in tightly focused polarization-tailored light beams. Phys. Rev. A, 89, 013840(2014).

    [41] Y. Shen, X. Wang, Z. Xie. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [42] T. Baldacchini. Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications(2015).

    [43] S. Kawata, H. B. Sun, T. Tanaka. Finer features for functional microdevices. Nature, 412, 697-698(2001).

    [44] J. K. Gansel, M. Thiel, M. S. Rill. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513-1515(2009).

    [45] M. Hentschel, M. Schaferling, X. Duan. Chiral plasmonics. Sci. Adv., 3, e1602735(2017).

    [46] V. V. Kotlyar, A. A. Kovalev. Optical vortex beams with a symmetric and almost symmetric OAM spectrum. J. Opt. Soc. Am. A, 38, 1276(2021).

    Mengdi Luo, Jisen Wen, Pengcheng Ma, Qiuyuan Sun, Xianmeng Xia, Gangyao Zhan, Zhenyao Yang, Liang Xu, Dazhao Zhu, Cuifang Kuang, Xu Liu. Three-dimensional nanoscale vortex line visualization and chiral nanostructure fabrication of tightly focused multi-vortex beams via direct laser writing[J]. Photonics Research, 2024, 12(1): 70
    Download Citation