• Photonics Research
  • Vol. 9, Issue 3, 395 (2021)
Haofei Xu1, Zhimin Zhu2, Jiancai Xue1, Qiuqiang Zhan2, Zhangkai Zhou1、3、*, and Xuehua Wang1、4、*
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • 2Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
  • 3e-mail: zhouzhk@mail.sysu.edu.cn
  • 4e-mail: wangxueh@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.414047 Cite this Article Set citation alerts
    Haofei Xu, Zhimin Zhu, Jiancai Xue, Qiuqiang Zhan, Zhangkai Zhou, Xuehua Wang. Giant enhancements of high-order upconversion luminescence enabled by multiresonant hyperbolic metamaterials[J]. Photonics Research, 2021, 9(3): 395 Copy Citation Text show less
    References

    [1] N. Rivera, I. Kaminer. Light-matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538-561(2020).

    [2] S. I. Azzam, A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, X. Zhang. Ten years of spasers and plasmonic nanolasers. Light Sci. Appl., 9, 90(2020).

    [3] N. S. Mueller, Y. Okamura, B. G. M. Vieira, S. Juergensen, H. Lange, E. B. Barros, F. Schulz, S. Reich. Deep strong light-matter coupling in plasmonic nanoparticle crystals. Nature, 583, 780-784(2020).

    [4] R. Chen, T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. C. Hasnain. Nanolasers grown on silicon. Nat. Photonics, 5, 170-175(2011).

    [5] S. W. Lee, S. Bae, D. Kim, H. S. Lee. Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater., 32, 2002202(2020).

    [6] A. G. Curtop, R. Quidant, M. P. Kreuzer, N. F. van Hulst, G. Volpe, T. H. Taminiau. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 329, 930-933(2010).

    [7] X. Y. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. H. Gong, Y. F. Xiao. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21-24(2019).

    [8] T. Wang, D. P. Qi, H. Yang, Z. Y. Liu, M. Wang, W. R. Leow, G. Chen, J. C. Yu, K. He, H. W. Cheng, Y. L. Wu, H. Zhang, X. D. Chen. Tactile chemomechanical transduction based on an elastic microstructured array to enhance the sensitivity of portable biosensors. Adv. Mater., 31, 1803883(2019).

    [9] Y. Y. Xia, J. Wang, Y. B. Zhang, Y. W. Shan, Y. Y. Dai, A. Chen, T. Y. Shen, S. W. Wu, X. H. Liu, L. Shi, J. Zi. Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure. Adv. Opt. Mater., 8, 2000264(2020).

    [10] Y. J. Bao, Y. Yu, H. F. Xu, C. Guo, J. T. Li, S. Sun, Z. K. Zhou, C. W. Qiu, X. H. Wang. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation brightness control. Light Sci. Appl., 8, 95(2019).

    [11] M. J. Wan, Y. Li, J. W. Chen, W. Y. Wu, Z. Chen, Z. L. Wang, H. T. Wang. Strong tunable absorption enhancement in graphene using dielectric-metal core-shell resonators. Sci. Rep., 7, 32(2017).

    [12] Q. T. Cao, H. M. Wang, C. H. Dong, H. Jing, R. S. Liu, X. Chen, L. Ge, Q. H. Gong, Y. F. Xiao. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 118, 033901(2017).

    [13] Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, C. H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [14] J. C. Xue, Z. Z. Zhou, L. M. Lin, C. Guo, S. Sun, D. Y. Lei, C. W. Qiu, X. H. Wang. Perturbative countersurveillance metaoptics with compound nanosieves. Light Sci. Appl., 8, 101(2019).

    [15] P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, A. V. Zayats. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat. Nanotechnol., 13, 159-164(2018).

    [16] Z. Z. Zhou, J. Liu, Y. J. Bao, L. Wu, C. E. Png, X. H. Wang, C. W. Qiu. Quantum plasmonics get applied. Prog. Quantum Electron., 65, 1-20(2019).

    [17] K. Y. Yang, K. Beha, D. C. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Y. Oh, S. A. Diddams, S. B. Papp, K. J. Vahala. Broadband dispersion-engineered microresonator on a chip. Nat. Photonics, 10, 316-320(2016).

    [18] F. Yi, M. L. Ren, J. C. Reed, H. Zhu, J. C. Hou, C. H. Naylor, A. T. C. Johnson, R. Agarwal, E. Cubukcu. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett., 16, 1631-1636(2016).

    [19] T. A. Voytova, A. V. Yulin, A. E. Krasnok, K. V. Baryshnikova, P. A. Belov. The role of Purcell effect for third harmonic generation. J. Phys. Conf. Ser., 690, 012034(2016).

    [20] P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, V. M. Gusev, O. N. Kompanets, R. O. Esenaliev, V. I. Balykin. Split hole resonator: a nanoscale UV light source. Nano Lett., 16, 1138-1142(2016).

    [21] A. Poddubny, I. Iorsh, P. Belov, Y. S. Kivshar. Hyperbolic metamaterials. Nat. Photonics, 7, 948-967(2013).

    [22] L. Ferraria, C. Wub, D. Lepaged, X. Zhang, Z. W. Liu. Hyperbolic metamaterials and their applications. Prog. Quantum Electron, 40, 1-40(2015).

    [23] I. Avrutsky, I. Salakhutdinov, J. Elser, V. Podolskiy. Highly confined optical modes in nanoscale metal-dielectric multilayers. Phys. Rev. B, 75, 241402(2007).

    [24] G. Chen, H. Agren, T. Y. Ohulchanskyy, P. N. Prasad. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications. Chem. Soc. Rev., 44, 1680-1713(2015).

    [25] X. Wu, Y. W. Zhang, K. Takle, O. Bilsel, Z. J. Li, H. Lee, Z. J. Zhang, D. S. Li, W. Fan, C. Y. Duan, E. M. Chan, C. Lois, Y. Xiang, G. Han. Dye sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano, 10, 1060-1066(2016).

    [26] B. Zhou, B. Shi, D. Jin, X. Liu. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol., 10, 924-936(2015).

    [27] S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. L. Davies, Y. S. Kivshar. Nonlinear light generation in topological nanostructures. Nat. Nanotechnol., 14, 126-130(2019).

    [28] A. F. Bravo, D. Q. Wang, E. S. Barnard, A. Teitelboim, C. Tajon, J. Guan, G. C. Schatz, B. E. Cohen, E. M. Chan, P. J. Schuck, T. W. Odom. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater., 18, 1172-1176(2019).

    [29] S. H. Wen, J. J. Zhou, P. J. Schuck, Y. D. Suh, T. W. Schmidt, D. Y. Jin. Future and challenges for hybrid upconversion nanosystem. Nat. Photonics, 13, 828-838(2019).

    [30] Y. Yi, Z. X. Chen, X. F. Yu, Z. K. Zhou, J. Li. Recent advances in quantum effects of 2D materials. Adv. Quantum Technol., 2, 1800111(2019).

    [31] F. Wang, R. Deng, X. Liu. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc., 9, 1634-1644(2014).

    [32] Z. Li, Y. Zhang. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology, 19, 345606(2008).

    [33] Q. Zhan, H. Liu, B. Wang. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun., 8, 1058(2017).

    [34] D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol., 9, 48-54(2014).

    [35] L. Li, W. Wang, T. S. Luk, X. D. Yang, J. Gao. Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures. ACS Photon., 4, 501-508(2017).

    [36] A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, A. V. Zayat. Purcell effect in hyperbolic metamaterial resonators. Phys. Rev. B, 92, 195127(2015).

    [37] A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, A. A. Orlov, P. A. Belov, S. V. Zhukovsky. Enhancement of the Purcell factor in multiperiodic hyperbolic like metamaterials. Phys. Rev. A, 93, 033855(2016).

    [38] Y. F. Shen, Y. X. Yan, A. N. Brigeman, H. Kim, N. C. Giebink. Efficient upper-excited state fluorescence in an organic hyperbolic metamaterial. Nano Lett., 18, 1693-1698(2018).

    [39] Z. K. Zhou, J. C. Xue, Z. B. Zheng, J. H. Li, Y. L. Ke, Y. Yu, J. B. Han, W. G. Xie, S. Z. Deng, H. J. Chen, X. H. Wang. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions. Nanoscale, 7, 15392-15403(2015).

    [40] A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, P. N. Prasad. Photodynamic therapy by in situ nonlinear photon conversion. Nat. Photonics, 8, 455-461(2014).

    [41] H. Zhang, T. Jia, X. Shang, S. Zhang, Z. Sun, J. Qiu. Mechanisms of the blue emission of NaYF4:Tm3+ nanoparticles excited by an 800 nm continuous wave laser. Phys. Chem. Chem. Phys, 18, 25905-25914(2016).

    [42] G. F. Wang, W. P. Qin, L. L. Wang, G. D. Wei, P. F. Zhu, R. J. Kim. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. Opt. Express, 16, 11907-11914(2008).

    [43] D. A. Simpson, W. E. K. Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, G. W. Baxter. Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation. Opt. Express, 16, 13781-13799(2008).

    [44] J. Liao, D. Jin, C. Chen, Y. Li, J. Zhou. Helix shape power dependent properties of single upconversion nanoparticles. J. Phys. Chem. Lett., 11, 2883-2890(2020).

    [45] K. R. Deng, L. L. Xu, X. Guo, X. T. Wu, Y. L. Liu, Z. M. Zhu, Q. Li, Q. Q. Zhan, C. X. Li, Z. W. Quan. Binary nanoparticle superlattices for plasmonically modulating upconversion luminescence. Small, 16, 2002066(2020).

    [46] Z. F. Liao, H. F. Xu, W. R. Zhao, H. X. Yang, J. Y. Zhong, H. Zhang, Z. G. Nie, Z. K. Zhou. Energy transfer from Mn4+ to Mn5+ and near infrared emission with wide excitation band in Ca14Zn6Ga10O35:Mn phosphors. Chem. Eng. J., 395, 125060(2020).

    [47] J. G. Danzl, S. C. Sidenstein, C. Gregor, N. T. Urban, P. Ilgen, S. Jakobs, S. W. Hell. Coordinate-targeted fluorescence nanoscopy with multiple off states. Nat. Photonics, 10, 122-128(2016).

    [48] Y. M. Wu, J. H. Xu, E. T. Poh, L. L. Liang, H. L. Liu, J. K. W. Yang, C. W. Qiu, R. A. L. Vallée, X. G. Liu. Upconversion superburst with sub-2  μs lifetime. Nat. Nanotechnol., 14, 1110-1115(2019).

    [49] J. J. Zhou, S. H. Wen, J. Y. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, D. Y. Jin. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photonics, 12, 154-158(2018).

    [50] D. W. Lu, S. K. Cho, S. Ahn, L. Brun, C. J. Summers, W. H. Park. Plasmon enhancement mechanism for the upconversion processes in NaYF4:Yb3+, Er3+ nanoparticles: Maxwell versus Förster. ACS Nano, 8, 7780-7792(2014).

    [51] B. Zhou, B. Tang, C. Zhang, C. Y. Qin, Z. J. Gu, Y. M. Ma, T. Y. Zhai, J. N. Yao. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nat. Commun., 11, 1174(2020).

    [52] D. Li, B. Dong, X. Bai, Y. Wang, H. W. Song. Influence of the TGA modification on upconversion luminescence of hexagonal-phase NaYF4:Yb3+, Er3+ nanoparticles. J. Phys. Chem. C, 114, 8219-8226(2010).

    [53] Q. Zhan, X. Zhang, Y. Zhao, J. Liu, S. He. Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod. Laser Photon. Rev., 9, 479-487(2015).

    Haofei Xu, Zhimin Zhu, Jiancai Xue, Qiuqiang Zhan, Zhangkai Zhou, Xuehua Wang. Giant enhancements of high-order upconversion luminescence enabled by multiresonant hyperbolic metamaterials[J]. Photonics Research, 2021, 9(3): 395
    Download Citation