[1] Zheng G, Wang C[M]. Biomedical optics, 1-3(2017).
[2] Ding H J, Xing K L. Progress of medical imaging technology[J]. Chinese Medical Equipment Journal, 27, 22-23, 26(2006).
[3] Shen W, Liu G Y. Medical imaging and its application in the diagnosis and treatment of functional diseases and oncology[C], 455-456(2010).
[4] Sun J H. Design and implementation of intelligent album for Android platform[D], 1-2(2017).
[5] Guan H N, Wu Q Y, Song Y et al. Progress in application of smartphone imaging technology in food and drug analysis[J]. The Food Industry, 41, 252-255(2020).
[6] Wang T T, Wang R Y, Zhang Z F et al. Application development of smartphones in biochemical sensor analysis[J]. Journal of Instrumental Analysis, 39, 1561-1566(2020).
[7] Kanchi S, Sabela M I, Mdluli P S et al. Smartphone based bioanalytical and diagnosis applications: a review[J]. Biosensors and Bioelectronics, 102, 136-149(2018).
[8] Hunt B, Ruiz A J, Pogue B W. Smartphone-based imaging systems for medical applications: a critical review[J]. Journal of Biomedical Optics, 26, 040902(2021).
[9] Maier T, Kulichova D, Schotten K et al. Accuracy of a smartphone application using fractal image analysis of pigmented moles compared to clinical diagnosis and histological result[J]. Journal of the European Academy of Dermatology and Venereology: JEADV, 29, 663-667(2015).
[10] Wu C C, Chou S J, Liao T S et al. Portable skin analyzer based on smartphone[C], 78-80(2013).
[11] Ferlay J, Colombet M, Soerjomataram I et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018[J]. European Journal of Cancer, 103, 356-387(2018).
[12] Okhovat J P, Beaulieu D, Tsao H et al. The first 30 years of the American Academy of Dermatology skin cancer screening program: 1985—2014[J]. Journal of the American Academy of Dermatology, 79, 884-891.e3(2018).
[13] Balch C M, Gershenwald J E, Soong S J et al. Final version of 2009 AJCC melanoma staging and classification[J]. Journal of Clinical Oncology, 27, 6199-6206(2009).
[14] Tognetti L, Cartocci A, Balistreri A et al. The comparative use of multiple electronic devices in the teledermoscopic diagnosis of early melanoma[J]. Telemedicine Journal and e-Health, 27, 495-502(2021).
[15] Şenel E, Baba M T, Durdu M. The contribution of teledermatoscopy to the diagnosis and management of non-melanocytic skin tumours[J]. Journal of Telemedicine and Telecare, 19, 60-63(2013).
[16] Hibler B P, Qi Q C, Rossi A M. Current state of imaging in dermatology[J]. Seminars in Cutaneous Medicine and Surgery, 35, 2-8(2016).
[17] Zhang L Q, Liu X, Li Y Y et al. A self-made simple low-cost dermoscopy[J]. Negative, 9, 21-24(2018).
[19] Uthoff R D, Song B F, Maarouf M et al. Point-of-care, multispectral, smartphone-based dermatoscopes for dermal lesion screening and erythema monitoring[J]. Journal of Biomedical Optics, 25, 066004(2020).
[20] Guo C Q. Skin detection based on a multispectral imaging system[D], 4-5(2014).
[21] Kim S, Cho D, Kim J et al. Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis[J]. Biomedical Optics Express, 7, 5294-5307(2016).
[22] Spigulis J, Oshina I, Berzina A et al. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination[J]. Journal of Biomedical Optics, 22, 091508(2017).
[23] Eisenbeiß W, Marotz J, Schrade J P. Reflection-optical multispectral imaging method for objective determination of burn depth[J]. Burns, 25, 697-704(1999).
[24] Freeman E E, Semeere A, Laker-Oketta M et al. Feasibility and implementation of portable confocal microscopy for point-of-care diagnosis of cutaneous lesions in a low-resource setting[J]. Journal of the American Academy of Dermatology, 84, 499-502(2021).
[25] Tearney G J, Webb R H, Bouma B E. Spectrally encoded confocal microscopy[J]. Optics Letters, 23, 1152-1154(1998).
[26] Kim J, Kang D, Gweon D. Spectrally encoded slit confocal microscopy[J]. Optics Letters, 31, 1687-1689(2006).
[27] Freeman E E, Semeere A, Osman H et al. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo[J]. Biomedical Optics Express, 9, 1906-1915(2018).
[28] Monjur M, Hoque I T, Hashem T et al. Smartphone based fundus camera for the diagnosis of retinal diseases[J]. Smart Health, 19, 100177(2021).
[29] Jin K, Lu H T, Su Z A et al. Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera[J]. BMC Ophthalmology, 17, 89(2017).
[30] Toslak D, Ayata A, Liu C G et al. Wide-field smartphone fundus video camera based on miniaturized indirect ophthalmoscopy[J]. Retina, 38, 438-441(2018).
[31] Hacisoftaoglu R E, Karakaya M, Sallam A B. Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems[J]. Pattern Recognition Letters, 135, 409-417(2020).
[32] Maamari R N, Keenan J D, Fletcher D A et al. A mobile phone-based retinal camera for portable wide field imaging[J]. The British Journal of Ophthalmology, 98, 438-441(2014).
[33] Wintergerst M W M, Petrak M, Li J Q et al. Non-contact smartphone-based fundus imaging compared to conventional fundus imaging: a low-cost alternative for retinopathy of prematurity screening and documentation[J]. Scientific Reports, 9, 1-8(2019).
[34] Desai A D, Peng C L, Fang L Y et al. Open-source, machine and deep learning-based automated algorithm for gestational age estimation through smartphone lens imaging[J]. Biomedical Optics Express, 9, 6038-6052(2018).
[35] Solyman O, Ahmad M, Arora K et al. Stereoscopic three-dimensional (3D) slit-lamp photography using a compact 3D digital camera[J]. Indian Journal of Ophthalmology, 69, 1303-1305(2021).
[36] Aswin P R. Smartphone anterior segment photography with slit-lamp assisted illumination[J]. Indian Journal of Ophthalmology, 68, 2249(2020).
[37] Mohammadpour M, Mohammadpour L, Hassanzad M. Smartphone assisted slit lamp free anterior segment imaging: a novel technique in teleophthalmology[J]. Contact Lens & Anterior Eye, 39, 80-81(2016).
[38] Truong P, Phan A, Truong B et al. A smartphone attachment for remote ophthalmic slit lamp examinations[J]. Microsystem Technologies, 26, 3403-3407(2020).
[39] Dutt S, Vadivel S S, Nagarajan S et al. A novel approach to anterior segment imaging with smartphones in the COVID-19 era[J]. Indian Journal of Ophthalmology, 69, 1257-1262(2021).
[40] Huerta-Carranza O, Campos-García M, Moreno-Oliva V I et al. Smartphone-based corneal topography with null-screens[J]. Applied Optics, 61, 1381-1388(2022).
[41] Gairola S, Bohra M, Shaheer N et al. SmartKC: smartphone-based corneal topographer for keratoconus detection[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5, 1-27(2021).
[42] Rosa A L B. An accessible approach for corneal topography[D], 55-64(2013).
[43] Song B F, Sunny S, Uthoff R D et al. Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning[J]. Biomedical Optics Express, 9, 5318-5329(2018).
[44] Uthoff R D, Song B F, Sunny S et al. Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities[J]. PLoS One, 13, e0207493(2018).
[45] Uthoff R D, Song B F, Sunny S et al. Small form factor, flexible, dual-modality handheld probe for smartphone-based, point-of-care oral and oropharyngeal cancer screening[J]. Journal of Biomedical Optics, 24, 106003(2019).
[46] Cavalcanti T C, Kim S, Lee K et al. Smartphone-based spectral imaging otoscope: system development and preliminary study for evaluation of its potential as a mobile diagnostic tool[J]. Journal of Biophotonics, 13, e2452(2020).
[47] Askarian B, Yoo S C, Chong J W. Novel image processing method for detecting strep throat (streptococcal pharyngitis) using smartphone[J]. Sensors, 19, 3307(2019).
[48] Bae J K, Vavilin A, You J S et al. Smartphone-based endoscope system for advanced point-of-care diagnostics: feasibility study[J]. JMIR MHealth and UHealth, 5, e99(2017).
[49] Mink J, Peterson C. MobileODT: a case study of a novel approach to an mHealth-based model of sustainable impact[J]. MHealth, 2, 12(2016).
[50] Kass A, Slyper R, Levitz D. Optical design of low cost imaging systems for mobile medical applications[J]. Proceedings of SPIE, 9314, 93140B(2015).
[51] Bolton F J, Weiser R, Kass A J et al. Development and bench testing of a multi-spectral imaging technology built on a smartphone platform[J]. Proceedings of SPIE, 9699, 969907(2016).
[52] Millien C, Jean-Baptiste M C, Manite G et al. Remote quality assurance in cervical cancer screening in low resource settings using a handheld smartphone-based colposcope[J]. Proceedings of SPIE, 9314, 93140A(2015).
[53] Goldstein A, Goldstein L S, Lipson R et al. Assessing the feasibility of a rapid, high-volume cervical cancer screening programme using HPV self-sampling and digital colposcopy in rural regions of Yunnan, China[J]. BMJ Open, 10, e035153(2020).
[54] Urner E, Delavy M, Catarino R et al. A smartphone-based approach for triage of human papillomavirus-positive sub-Saharan African women: a prospective study[J]. JMIR MHealth and UHealth, 5, e72(2017).
[55] Mungo C, Osongo C O, Ambaka J et al. Feasibility and acceptability of smartphone-based cervical cancer screening among HIV-positive women in western Kenya[J]. JCO Global Oncology, 7, 686-693(2021).
[56] Sharma G, Thoma O M, Blessing K et al. Smartphone-based multimodal tethered capsule endoscopic platform for white-light, narrow-band, and fluorescence/autofluorescence imaging[J]. Journal of Biophotonics, 14, e202000324(2021).
[57] Moon Y, Oh J, Hyun J et al. Cost-effective smartphone-based articulable endoscope systems for developing countries: instrument validation study[J]. JMIR MHealth and UHealth, 8, e17057(2020).
[58] Nausheen F, Niknafs N P, MacLean D J et al. The HEAVEN criteria predict laryngoscopic view and intubation success for both direct and video laryngoscopy: a cohort analysis[J]. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 27, 50(2019).
[59] Baek M J, Park S, Kim K H et al. National trend of uroflowmetry, urodynamic study and cystoscopy considering the change in the population structure in Korea from 2010 to 2015[J]. Journal of Korean Medical Science, 33, e145(2018).
[60] Grant B D, Quang T, Possati-Resende J C et al. A mobile-phone based high-resolution microendoscope to image cervical precancer[J]. PLoS One, 14, e0211045(2019).
[61] Bedard N, Quang T, Schmeler K et al. Real-time video mosaicing with a high-resolution microendoscope[J]. Biomedical Optics Express, 3, 2428-2435(2012).