• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516011 (2021)
Nan Ding, Nan Wang, Sen Liu, Yue Wang, Donglei Zhou, Wen Xu*, and Hongwei Song**
Author Affiliations
  • State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • show less
    DOI: 10.3788/LOP202158.1516011 Cite this Article Set citation alerts
    Nan Ding, Nan Wang, Sen Liu, Yue Wang, Donglei Zhou, Wen Xu, Hongwei Song. Research Progress on Doped Perovskite Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516011 Copy Citation Text show less
    References

    [1] Seth S, Samanta A. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition[J]. Scientific Reports, 6, 37693(2016).

    [2] Sun S B, Yuan D, Xu Y et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature[J]. ACS Nano, 10, 3648-3657(2016).

    [3] Liang Z Q, Zhao S L, Xu Z et al. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission[J]. ACS Applied Materials & Interfaces, 8, 28824-28830(2016).

    [4] Udayabhaskararao T, Kazes M, Houben L et al. Nucleation, growth, and structural transformations of perovskite nanocrystals[J]. Chemistry of Materials, 29, 1302-1308(2017).

    [5] Kojima A, Teshima K, Miyasaka T et al. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2)[EB/OL]. https://iopscience.?iop.?org/article/10.1149/MA2007-02/8/352

    [6] Stranks S D, Eperon G E, Grancini G et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 342, 341-344(2013).

    [7] Dong Q F, Fang Y J, Shao Y C et al. Solar cells, electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 347, 967-970(2015).

    [8] Herz L M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits[J]. ACS Energy Letters, 2, 1539-1548(2017).

    [9] Xing G C, Mathews N, Sun S Y et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 342, 344-347(2013).

    [10] Shi D, Adinolfi V, Comin R et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 347, 519-522(2015).

    [11] Schmidt L C, Pertegás A, González-Carrero S et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 136, 850-853(2014).

    [12] Protesescu L, Yakunin S, Bodnarchuk M I et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 15, 3692-3696(2015).

    [13] Li X M, Wu Y, Zhang S L et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 26, 2435-2445(2016).

    [14] Lin K B, Xing J, Quan L N et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent[J]. Nature, 562, 245-248(2018).

    [15] Luo J J, Wang X M, Li S R et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 563, 541-545(2018).

    [16] Pan G C, Bai X, Yang D W et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties[J]. Nano Letters, 17, 8005-8011(2017).

    [17] Ding N, Zhou D L, Pan G C et al. Europium-doped lead-free Cs3Bi2Br9 perovskite quantum dots and ultrasensitive Cu2+ detection[J]. ACS Sustainable Chemistry & Engineering, 7, 8397-8404(2019).

    [18] Parobek D, Roman B J, Dong Y T et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Letters, 16, 7376-7380(2016).

    [19] Dong Y R, Zeng P, Yu Y et al. Perovskites: trivalent-neodymium additive modulated MAPbBr3 perovskite nucleation and growth: ultrawide processing window for one-step fabrication of efficient light-emitting perovskites[J]. Advanced Electronic Materials, 6, 2070015(2020).

    [20] Zhang Q, Su R, Liu X F et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 26, 6238-6245(2016).

    [21] Zhu Z Y, Yang Q Q, Gao L F et al. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 8, 1610-1614(2017).

    [22] Hu Q S, Li Z, Tan Z F et al. Rare earth ion-doped CsPbBr3 nanocrystals[J]. Advanced Optical Materials, 6, 1700864(2018).

    [23] Liu H W, Wu Z N, Gao H et al. One-step preparation of cesium lead halide CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals by microwave irradiation[J]. ACS Applied Materials & Interfaces, 9, 42919-42927(2017).

    [24] Tsai P C, Chen J Y, Ercan E et al. Uniform luminous perovskite nanofibers with color-tunability and improved stability prepared by one-step core/shell electrospinning[J]. Small, 14, e1704379(2018).

    [25] Song Z L, Bi W B, Zhuang X M et al. Low-temperature electron beam deposition of Zn-SnOx for stable and flexible perovskite solar cells[J]. Solar RRL, 4, 1900266(2020).

    [26] Hills-Kimball K, Nagaoka Y, Cao C et al. Synthesis of formamidinium lead halide perovskite nanocrystals through solid-liquid-solid cation exchange[J]. Journal of Materials Chemistry C, 5, 5680-5684(2017).

    [27] Motta C, El-Mellouhi F, Sanvito S. Exploring the cation dynamics in lead-bromide hybrid perovskites[J]. Physical Review B, 93, 235412(2016).

    [28] Kubicki D J, Prochowicz D, Hofstetter A et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1-xPbI3 hybrid perovskites from solid-state NMR[J]. Journal of the American Chemical Society, 139, 14173-14180(2017).

    [29] Zhang X L, Liu H, Wang W G et al. Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic-inorganic mixed cations[J]. Advanced Materials, 29, 1606405(2017).

    [30] Himchan C, Joo S K, Christoph W et al. High-efficiency polycrystalline perovskite light-emitting diodes based on mixed cations[J]. ACS Nano, 12, 2883-2892(2018).

    [31] Xu B, Wang W G, Zhang X L et al. Bright and efficient light-emitting diodes based on MA/Cs double cation perovskite nanocrystals[J]. Journal of Materials Chemistry C, 5, 6123-6128(2017).

    [32] Chen C, Wu Y, Liu L et al. Interfacial engineering and photon downshifting of CsPbBr3 nanocrystals for efficient, stable, and colorful vapor phase perovskite solar cells[J]. Advanced Science, 6, 1802046(2019).

    [33] Zhou D L, Sun R, Xu W et al. Impact of host composition, codoping, or tridoping on quantum-cutting emission of ytterbium in halide perovskite quantum dots and solar cell applications[J]. Nano Letters, 19, 6904-6913(2019).

    [34] Zhai Y, Bai X, Pan G C et al. Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl3 perovskite quantum dots[J]. Nanoscale, 11, 2484-2491(2019).

    [35] Fang Z S, He H P, Gan L et al. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites[J]. Advanced Science, 5, 1800736(2018).

    [36] Li S, Shi Z F, Zhang F et al. Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices[J]. Chemistry of Materials, 31, 3917-3928(2019).

    [37] Liu F, Jiang J K, Zhang Y H et al. Near-infrared emission from tin-lead (Sn-Pb) alloyed perovskite quantum dots by sodium doping[J]. Angewandte Chemie, 132, 8499-8502(2020).

    [38] Liu Y N, Pan G C, Wang R et al. Considerably enhanced exciton emission of CsPbCl3 perovskite quantum dots by the introduction of potassium and lanthanide ions[J]. Nanoscale, 10, 14067-14072(2018).

    [39] Nam J K, Chai S U, Cha W et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells[J]. Nano Letters, 17, 2028-2033(2017).

    [40] Liu C, Fan J, Li H et al. Highly efficient perovskite solar cells with substantial reduction of lead content[J]. Scientific Reports, 6, 35705(2016).

    [41] Linaburg M R, McClure E T, Majher J D et al. Cs1-xRbxPbCl3 and Cs1-xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites[J]. Chemistry of Materials, 29, 3507-3514(2017).

    [42] Song Y H, Choi S H, Park W K et al. A highly efficient and stable green-emitting mesoporous silica (MP)-(Cs0.4Rb0.6)PbBr3 perovskite composite for application in optoelectronic devices[J]. New Journal of Chemistry, 41, 14076-14079(2017).

    [43] Zhao Z Y, Xu W, Pan G C et al. Enhancing the exciton emission of CsPbCl3 perovskite quantum dots by incorporation of Rb+ ions[J]. Materials Research Bulletin, 112, 142-146(2019).

    [44] Chen H Y, Maiti S, Son D H. Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals[J]. ACS Nano, 6, 583-591(2012).

    [45] Yuan X, Ji S H, de Siena M C et al. Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration[J]. Chemistry of Materials, 29, 8003-8011(2017).

    [46] Yuan X, Zheng J J, Zeng R S et al. Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots[J]. Nanoscale, 6, 300-307(2014).

    [47] Arunkumar P, Gil K H, Won S et al. Colloidal organolead halide perovskite with a high Mn solubility limit: a step toward Pb-free luminescent quantum dots[J]. The Journal of Physical Chemistry Letters, 8, 4161-4166(2017).

    [48] Huang G G, Wang C L, Xu S H et al. Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange[J]. Advanced Materials, 29, 1700095(2017).

    [49] Liu H W, Wu Z N, Shao J R et al. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio[J]. ACS Nano, 11, 2239-2247(2017).

    [50] Pan G C, Bai X, Xu W et al. Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet-white light-emitting diode[J]. ACS Applied Materials & Interfaces, 10, 39040-39048(2018).

    [51] Su B B, Molokeev M S, Xia Z G et al. Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying[J]. Journal of Materials Chemistry C, 7, 11220-11226(2019).

    [52] Liu W Y, Lin Q L, Li H B et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 138, 14954-14961(2016).

    [53] Zhang X L, Cao W Y, Wang W G et al. Efficient light-emitting diodes based on green perovskite nanocrystals with mixed-metal cations[J]. Nano Energy, 30, 511-516(2016).

    [54] Vegard L. Die konstitution der mischkristalle und die raumfüllung der atome[J]. Zeitschrift Für Physik, 5, 17-26(1921).

    [55] Vitoreti A B, Agouram S, de la Fuente M S et al. Study of the partial substitution of Pb by Sn in Cs-Pb-Sn-Br nanocrystals owing to obtaining stable nanoparticles with excellent optical properties[J]. The Journal of Physical Chemistry C, 122, 14222-14231(2018).

    [56] van der Stam W, Geuchies J J, Altantzis T et al. Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange[J]. Journal of the American Chemical Society, 139, 4087-4097(2017).

    [57] Jellicoe T C, Richter J M, Glass H F J et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals[J]. Journal of the American Chemical Society, 138, 2941-2944(2016).

    [58] Deng J D, Wang H R, Xun J et al. Room-temperature synthesis of excellent-performance CsPb1-xSnxBr3 perovskite quantum dots and application in light emitting diodes[J]. Materials & Design, 185, 108246(2020).

    [59] Wang Y, Zou R, Chang J et al. Tin-based multiple quantum well perovskites for light-emitting diodes with improved stability[J]. The Journal of Physical Chemistry Letters, 10, 453-459(2019).

    [60] Wang H C, Wang W, Tang A C et al. High-performance CsPb1-xSnxBr3 perovskite quantum dots for light-emitting diodes[J]. Angewandte Chemie, 56, 13650-13654(2017).

    [61] Li N, Zhu Z L, Li J W et al. Inorganic CsPb1-xSnxIBr2 for efficient wide-bandgap perovskite solar cells[J]. Advanced Energy Materials, 8, 1800525(2018).

    [62] Wang A F, Yan X X, Zhang M et al. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process[J]. Chemistry of Materials, 28, 8132-8140(2016).

    [63] Zhang H D, Zhu L D, Cheng J et al. Photoluminescence characteristics of Sn2+ and Ce3+-doped Cs2SnCl6 double-perovskite crystals[J]. Materials, 12, 1501(2019).

    [64] Tan Z F, Li J H, Zhang C et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping[J]. Advanced Functional Materials, 28, 1801131(2018).

    [65] Song J, Li J, Li X et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 27, 7162-7167(2015).

    [66] Yong Z J, Guo S Q, Ma J P et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. Journal of the American Chemical Society, 140, 9942-9951(2018).

    [67] Sun Z G, Wu Y, Wei C T et al. Suppressed ion migration in halide perovskite nanocrystals by simultaneous Ni2+ doping and halogen vacancy filling[J]. Chinese Optics, 14, 77-86(2021).

    [68] Bi C H, Wang S X, Li Q et al. Thermally stable copper (Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission[J]. The Journal of Physical Chemistry Letters, 10, 943-952(2019).

    [69] Cai T, Yang H J, Hills-Kimball K et al. Synthesis of all-inorganic Cd-doped CsPbCl3 perovskite nanocrystals with dual-wavelength emission[J]. The Journal of Physical Chemistry Letters, 9, 7079-7084(2018).

    [70] Behera R, Das Adhikari S, Dutta S K et al. Blue-emitting CsPbCl3 nanocrystals: impact of surface passivation for unprecedented enhancement and loss of optical emission[J]. The Journal of Physical Chemistry Letters, 9, 6884-6891(2018).

    [71] Yao J S, Ge J, Wang K H et al. Few-nanometer-sized alpha-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes[J]. Journal of the American Chemical Society, 141, 2069-2079(2019).

    [72] Lu M, Zhang X, Zhang Y et al. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices[J]. Advanced Materials, 30, e1804691(2018).

    [73] Shen X Y, Zhang Y, Kershaw S V et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices[J]. Nano Letters, 19, 1552-1559(2019).

    [74] Zhao H, Xu J, Zhou S J et al. Preparation of tortuous 3D γ-CsPbI3 films at low temperature by CaI2 as dopant for highly efficient perovskite solar cells[J]. Advanced Functional Materials, 29, 1808986(2019).

    [75] Moon B J, Kim S J, Lee S et al. Rare-earth-element-ytterbium-substituted lead-free inorganic perovskite nanocrystals for optoelectronic applications[J]. Advanced Materials, 31, e1901716(2019).

    [76] Mali S S, Patil J V, Hong C K. Hot-air-assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells[J]. Nano Letters, 19, 6213-6220(2019).

    [77] Shao H, Bai X, Cui H et al. White light emission in Bi3+/Mn2+ ion co-doped CsPbCl3 perovskite nanocrystals[J]. Nanoscale, 10, 1023-1029(2018).

    [78] Leng M Y, Yang Y, Zeng K et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability[J]. Advanced Functional Materials, 28, 1704446(2017).

    [79] Leng M Y, Chen Z W, Yang Y et al. Lead-free, blue emitting bismuth halide perovskite quantum dots[J]. Angewandte Chemie, 128, 15236-15240(2016).

    [80] Paternò G M, Mishra N, Barke A J et al. Broadband defects emission and enhanced ligand Raman scattering in 0D Cs3Bi2I9 colloidal nanocrystals[J]. Advanced Functional Materials, 29, 1805299(2019).

    [81] Leng M Y, Yang Y, Chen Z W et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission[J]. Nano Letters, 18, 6076-6083(2018).

    [82] Hu Y Q, Bai F, Liu X B et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells[J]. ACS Energy Letters, 2, 2219-2227(2017).

    [83] Chen C, Liu D, Zhang B X et al. Carrier interfacial engineering by bismuth modification for efficient and thermoresistant perovskite solar cells[J]. Advanced Energy Materials, 8, 1703659(2018).

    [84] Liu Z, Dai S L, Wang Y et al. Photoresponsive transistors based on lead-free perovskite and carbon nanotubes[J]. Advanced Functional Materials, 30, 1906335(2020).

    [85] Zhou D L, Liu D L, Pan G C et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells[J]. Advanced Materials, 29, 1704149(2017).

    [86] Ding N, Xu W, Zhou D L et al. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of silicon photodetectors with external quantum efficiency exceeding 70%[J]. Nano Energy, 78, 105278(2020).

    [87] Yao J S, Ge J, Han B N et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes[J]. Journal of the American Chemical Society, 140, 3626-3634(2018).

    [88] Sun R, Lu P, Zhou D L et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes[J]. ACS Energy Letters, 5, 2131-2139(2020).

    [89] Guvenc C M, Yalcinkaya Y, Ozen S et al. Gd3+-doped α-CsPbI3 nanocrystals with better phase stability and optical properties[J]. The Journal of Physical Chemistry C, 123, 24865-24872(2019).

    [90] Wang M, Deng K M, Meng L X et al. Bifunctional ytterbium (Ⅲ) chloride driven low-temperature synthesis of stable α-CsPbI3 for high-efficiency inorganic perovskite solar cells[J]. Small Methods, 4, 1900652(2019).

    [91] Wang L G, Zhou H P, Hu J N et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 363, 265-270(2019).

    [92] Song Z L, Xu W, Wu Y J et al. Incorporating of lanthanides ions into perovskite film for efficient and stable perovskite solar cells[J]. Small, 16, e2001770(2020).

    [93] Zhou L, Liao J F, Huang Z G et al. All-inorganic lead-free Cs2PdX6 (X=Br, I) perovskite nanocrystals with single unit cell thickness and high stability[J]. ACS Energy Letters, 3, 2613-2619(2018).

    [94] Rana P J, Swetha T, Mandal H et al. Energy transfer dynamics of highly stable Fe3+ doped CsPbCl3 perovskite nanocrystals with dual-color emission[J]. The Journal of Physical Chemistry C, 123, 17026-17034(2019).

    [95] Chen M, Ju M G, Carl A D et al. Cesium titanium(Ⅳ) bromide thin films based stable lead-free perovskite solar cells[J]. Joule, 2, 558-570(2018).

    [96] Lu M, Guo J, Sun S Q et al. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification[J]. Nano Letters, 20, 2829-2836(2020).

    [97] Liu W, Liu N J, Ji S L et al. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells[J]. Nano-Micro Letters, 12, 119(2020).

    [98] Wang L T, Shi Z F, Ma Z Z et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 H[J]. Nano Letters, 20, 3568-3576(2020).

    Nan Ding, Nan Wang, Sen Liu, Yue Wang, Donglei Zhou, Wen Xu, Hongwei Song. Research Progress on Doped Perovskite Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516011
    Download Citation