• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516011 (2021)
Nan Ding, Nan Wang, Sen Liu, Yue Wang, Donglei Zhou, Wen Xu*, and Hongwei Song**
Author Affiliations
  • State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • show less
    DOI: 10.3788/LOP202158.1516011 Cite this Article Set citation alerts
    Nan Ding, Nan Wang, Sen Liu, Yue Wang, Donglei Zhou, Wen Xu, Hongwei Song. Research Progress on Doped Perovskite Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516011 Copy Citation Text show less
    Schematic of metal halide perovskite ABX3 structure
    Fig. 1. Schematic of metal halide perovskite ABX3 structure
    Photographs and PL spectra of APbX3 perovskite QDs under UV-lamp, where A=MA, Cs, or FA, and X=Cl, Br, or I[31]
    Fig. 2. Photographs and PL spectra of APbX3 perovskite QDs under UV-lamp, where A=MA, Cs, or FA, and X=Cl, Br, or I[31]
    Spectra. (a) PL spectra of Li+-doped MAPbI3 films[35]; (b) absorption and PL spectra of Rb+-doped CsPbBr3 QDs[40]; (c) absorption and PL spectra of Na+-doped CsPbBr3 QDs[36]; (d) absorption and PL spectra of K+-doped CsPbCl3 QDs[38]
    Fig. 3. Spectra. (a) PL spectra of Li+-doped MAPbI3 films[35]; (b) absorption and PL spectra of Rb+-doped CsPbBr3 QDs[40]; (c) absorption and PL spectra of Na+-doped CsPbBr3 QDs[36]; (d) absorption and PL spectra of K+-doped CsPbCl3 QDs[38]
    TEM images of CsPbxMn1-xCl3 QDs and PL emission spectra[49]. (a)‒(d) Molar ratios of Pb to Mn are 1∶1.25, 1∶2.5, 1∶5, and 1∶10, respectively; (e)‒(f) absorption and PL spectra
    Fig. 4. TEM images of CsPbxMn1-xCl3 QDs and PL emission spectra[49]. (a)‒(d) Molar ratios of Pb to Mn are 1∶1.25, 1∶2.5, 1∶5, and 1∶10, respectively; (e)‒(f) absorption and PL spectra
    Energy level diagram of Mn2+-doped CsPbX3 QDs[52]
    Fig. 5. Energy level diagram of Mn2+-doped CsPbX3 QDs[52]
    CsPb1-xSnxBr3 perovskite QDs synthesized with solution re-precipitation[58]. (a) Photographs of CsPb1-xSnxBr3 perovskite QDs under 365 nm UV illumination; (b)‒(c) absorption and PL spectra of CsPb1-xSnxBr3 perovskite QDs with different Sn2+-doping concentrations
    Fig. 6. CsPb1-xSnxBr3 perovskite QDs synthesized with solution re-precipitation[58]. (a) Photographs of CsPb1-xSnxBr3 perovskite QDs under 365 nm UV illumination; (b)‒(c) absorption and PL spectra of CsPb1-xSnxBr3 perovskite QDs with different Sn2+-doping concentrations
    Cs2SnI6 perovskite nanocrystals[62]. (a) Morphology schematics of synthesized Cs2SnI6 perovskite nanocrystals and their photographs; (b)‒(f) Cs2SnI6 perovskite nanocrystals with different shapes
    Fig. 7. Cs2SnI6 perovskite nanocrystals[62]. (a) Morphology schematics of synthesized Cs2SnI6 perovskite nanocrystals and their photographs; (b)‒(f) Cs2SnI6 perovskite nanocrystals with different shapes
    Optical properties of CsPbX2 perovskite doped with divalent metal ions. (a)‒(c) PL and absorption spectra and PL decay traces of CsPbCl3 QDs and Ni2+-doped CsPbCl3 QDs under UV (365 nm) illumination, and PL decay trace of Ni2+-doped CsPbCl3 QDs (doping concentration of 11.9%), showing a fast and a slow component[66]; (d)‒(f) photos, PLQY, and XRD of undoped and Sr2+-doped CsPbI3 QDs under UV-light (365 nm) irradiation, the doping concentration(molar fraction) of SrI2 is 0%, 40%, and 60%[71]; (g)‒(i) absorption and PL spectra, PL peak,PLQY and decay curves of CsPbI3 QDs and CsPb1-xZnxI3 QDs[73]
    Fig. 8. Optical properties of CsPbX2 perovskite doped with divalent metal ions. (a)‒(c) PL and absorption spectra and PL decay traces of CsPbCl3 QDs and Ni2+-doped CsPbCl3 QDs under UV (365 nm) illumination, and PL decay trace of Ni2+-doped CsPbCl3 QDs (doping concentration of 11.9%), showing a fast and a slow component[66]; (d)‒(f) photos, PLQY, and XRD of undoped and Sr2+-doped CsPbI3 QDs under UV-light (365 nm) irradiation, the doping concentration(molar fraction) of SrI2 is 0%, 40%, and 60%[71]; (g)‒(i) absorption and PL spectra, PL peak,PLQY and decay curves of CsPbI3 QDs and CsPb1-xZnxI3 QDs[73]
    Photoelectric properties of Bi3+ doped perovskite. (a)‒(d) Unit cell structures and absorption and PL spectra of Cs3Bi2X9 perovskite QDs[78]; (e)‒(f) crystal structures of δ-CsPbI3 and α-CsPbI3, respectively, and surface morphologies and illumination picture of CsPb1-xBixI3 (0≤x[80]
    Fig. 9. Photoelectric properties of Bi3+ doped perovskite. (a)‒(d) Unit cell structures and absorption and PL spectra of Cs3Bi2X9 perovskite QDs[78]; (e)‒(f) crystal structures of δ-CsPbI3 and α-CsPbI3, respectively, and surface morphologies and illumination picture of CsPb1-xBixI3 (0≤x<0.1) perovskites[80]
    Optical properties of rare earth ion (RE3+) doped perovskite materials. (a)‒(c) Absorption and emission spectra of CsPbClxBr3-x and CsPbClxBr3-x QDs doped with different lanthanide ions; (d) schematic of energy transfer mechanism in the Yb3+, Ce3+ co-doped CsPbCl1.5Br1.5 QDs
    Fig. 10. Optical properties of rare earth ion (RE3+) doped perovskite materials. (a)‒(c) Absorption and emission spectra of CsPbClxBr3-x and CsPbClxBr3-x QDs doped with different lanthanide ions; (d) schematic of energy transfer mechanism in the Yb3+, Ce3+ co-doped CsPbCl1.5Br1.5 QDs
    Cationic group or metal ionRadius /ÅCationic group or metal ionRadius /Å
    Ammonium (NH4+1.46Guanidinium ((NH23C+2.78
    Hydroxylammonium (NH3OH+2.16Tetramethylammonium ((CH34N+2.92
    Methylammonium (CH3NH3+2.17Thiazolium (C3H4NS+3.20
    Hydrazinium (NH3NH2+2.17Tropylium (C7H7+3.33
    Azetidinium ((CH23NH2+2.50Piperazinium (C4H12N22+3.22
    Formamidinium (CH(NH22+2.53Cs+1.67
    Imidazolium (C3N2H5+2.58Rb+1.52
    Dimethylammonium ((CH32NH2+2.72K+1.38
    Ethylammonium (CH3CH2NH3+2.74Na+1.02
    Pyrrolinium (NC4H8+2.72Li+0.76
    Dabconium (C6H14N22+3.39
    Table 1. Effective ionic radii of organic molecular cations and metal ion (A-site doping )
    Metal ionRadius /ÅMetal ionRadius /Å
    Be2+0.45Pd2+0.86
    Mg2+0.72Pt2+0.80
    Ca2+1.00Cu2+0.73
    Sr2+1.18Ag2+0.94
    Ba2+1.35Zn2+0.74
    Ti2+0.86Cd2+0.95
    V2+0.79Hg2+1.02
    Cr2+0.80Ge2+0.73
    Mn2+0.83Sn2+1.15
    Fe2+0.78Pb2+1.19
    Co2+0.75Sm2+1.22
    Ni2+0.69Eu2+1.17
    Dy2+1.07Ce3+1.01
    Tm2+1.03Pr3+0.99
    Yb2+1.02Nd3+0.98
    Np2+1.10Sm3+0.96
    Tl+1.50Eu3+0.95
    Cu+0.77Gd3+0.9
    Ag+1.15Dy3+0.91
    Au+1.37Er3+0.89
    Au3+0.85Tm3+0.88
    Sb3+0.76Lu3+0.86
    Bi3+1.03Pu3+1.00
    La3+1.03
    Table 2. Effective ionic radii of metal ions (B-site doping )
    Nan Ding, Nan Wang, Sen Liu, Yue Wang, Donglei Zhou, Wen Xu, Hongwei Song. Research Progress on Doped Perovskite Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516011
    Download Citation