• Journal of Inorganic Materials
  • Vol. 38, Issue 9, 1103 (2023)
Wanli FANG1,2, Lili SHEN2, Haiyan LI2, Xinyu CHEN2..., Zongqi CHEN2, Chunhui SHOU3, Bin ZHAO1,* and Songwang YANG1,2,4,*|Show fewer author(s)
Author Affiliations
  • 11. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 22. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 33. Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province, Zhejiang Energy Group R&D, Hangzhou 310003, China
  • 44. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20230002 Cite this Article
    Wanli FANG, Lili SHEN, Haiyan LI, Xinyu CHEN, Zongqi CHEN, Chunhui SHOU, Bin ZHAO, Songwang YANG. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103 Copy Citation Text show less
    References

    [1] M KIM, J JEONG, H LU et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375, 302(2022).

    [2] M R SAMANTARAY, N K RANA, A KUMAR et al. Stability study of large-area perovskite solar cells fabricated with copper as low-cost metal contact. J. Energy Res., 46, 1250(2022).

    [3] M YUE, H YUE, M ANYI et al. Application of lead acetate additive for printable perovskite solar cell. J. Inorg. Mater., 37, 197(2022).

    [4] M G LAURA, R DANIEL, J FRANKLIN. Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. J. Energy Chem., 222(2021).

    [5] S LIU, W HUANG, P LIAO et al. 17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. J. Mater. Chem. A, 5, 22952(2017).

    [6] K D JAYAN, V SEBASTIAN. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy, 40(2021).

    [7] J WANG, Z ZHENG, Y ZU et al. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater., 33, 2102787(2021).

    [8] H WANG, Z HUANG, S XIAO et al. An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J. Mater. Chem. A, 9, 5759(2021).

    [9] X XU, Z LIU, Z ZUO et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett., 15, 2402(2015).

    [10] K CAO, Z ZUO, J CUI et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 171(2015).

    [11] X LIU, S REN, Z LI et al. Flexible transparent high-efficiency photoelectric perovskite resistive switching memory. Adv. Funct. Mater., 32, 2202951(2022).

    [12] L TAO, Y ZHANG, H CHEN et al. Printable commercial carbon based mesoscopic perovskite solar cell using NiO/graphene as hole-transport materials. ECS J. Solid State Sci. Technol., 10, 105003(2021).

    [13] S BHANDARI, A ROY, M S ALI et al. Cotton soot derived carbon nanoparticles for NiO supported processing temperature tuned ambient perovskite solar cells. Sci. Rep., 23388(2021).

    [14] F JIANG, W C H CHOY, X LI et al. Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater., 27, 2930(2015).

    [15] J H LEE, I S JIN, J W JUNG. Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability. Chem. Eng. J., 129678(2021).

    [16] X M HOU, Y HU, H W LIU et al. Effect of guanidinium on mesoscopic perovskite solar cells. J. Mater. Chem. A, 5, 73(2017).

    [17] J J ZHAO, X SU, Z MI et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Metals, 41, 96(2022).

    [18] Z LIU, B SUN, X LIU et al. Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett., 10, 34(2018).

    [19] R TSUJI, D BOGACHUK, B LUO et al. Activation of weak monochromic photocurrents by white light irradiation for accurate IPCE measurements of carbon-based multi-porous-layered-electrode perovskite solar cells. Electrochemistry, 88, 418(2020).

    [20] X LIU, Y CHENG, C LIU et al. 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy Environ. Sci., 12, 1622(2019).

    [21] P LIAO, X ZHAO, G LI et al. A new method for fitting current-voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett., 5(2018).

    [22] W KE, G FANG, J WAN et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun., 6700(2015).

    [23] Y WANG, T MAHMOUDI, Y B HAHN. Highly stable and efficient perovskite solar cells based on FAMA-perovskite-Cu:NiO composites with 20.7% efficiency and 80.5% fill factor. Adv. Energy Mater., 10, 2000967(2020).

    [24] A M A LEGUY, J M FROST, A P MCMAHON et al. The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun., 7124(2015).

    [25] C CAI, K ZHOU, H GUO et al. Enhanced hole extraction by NiO nanoparticles in carbon-based perovskite solar cells. Electrochim. Acta, 100(2019).

    [26] S LIU, S LI, J WU et al. Amide additives induced a Fermi level shift to improve the performance of hole-conductor-free, printable mesoscopic perovskite solar cells. J. Phy. Chem. Lett., 10, 6865(2019).

    [27] X LI, W ZHANG, X GUO et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science, 375, 434(2022).

    [28] Y ZHOU, X ZHANG, X LU et al. Promoting the hole extraction with Co3O4 nanomaterials for efficient carbon-based CsPbI2Br perovskite solar cells. Solar RRL, 3, 1800315(2019).

    [29] X CHEN, L LU, D GU et al. Chlorine management of a carbon counter electrode for high performance printable perovskite solar cells. J. Mater. Chem. C, 9, 8615(2021).

    Wanli FANG, Lili SHEN, Haiyan LI, Xinyu CHEN, Zongqi CHEN, Chunhui SHOU, Bin ZHAO, Songwang YANG. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103
    Download Citation