• Infrared and Laser Engineering
  • Vol. 49, Issue 9, 20201039 (2020)
Rui Chen, Xia Liu, Hong Wang, Weiyi Shi, Weinan Liu, Shaoji Jiang, and Jianwen Dong*
Author Affiliations
  • School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    DOI: 10.3788/IRLA20201039 Cite this Article
    Rui Chen, Xia Liu, Hong Wang, Weiyi Shi, Weinan Liu, Shaoji Jiang, Jianwen Dong. From subwavelength grating to metagrating: principle, design and applications[J]. Infrared and Laser Engineering, 2020, 49(9): 20201039 Copy Citation Text show less
    References

    [1] Loewen E G, Popov E. Diffraction gGatings Applications (Optical Science Engineering)[M]. New Yk: CRC Press, 1997.

    [2] A F Koenderink, A Alu, A Polman. Nanophotonics: shrinking light-based technology. Science, 348, 516-521(2015).

    [3] S Collin. Nanostructure arrays in free-space: optical properties and applications. Reports on Progress in Physics, 77, 126402(2014).

    [4] D R Smith, J B Pendry, M C K Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [5] W Cai, U K Chettiar, A V Kildishev. Optical cloaking with metamaterials. Nature Photonics, 1, 224(2007).

    [6] N Yu, F Capasso. Flat optics with designer metasurfaces. Nature Materials, 13, 139-150(2014).

    [7] Y Ra’di, D L Sounas, A Alù. Metagratings: beyond the limits of graded metasurfaces for wave front control. Physical Review Letters, 119, 067404(2017).

    [8] N Bonod, N Jérôme. Diffraction gratings: from principles to applications in high-intensity lasers. Advanced Optics Photonics, 8, 156-199(2016).

    [9] Neviere M, Popov E. Light Propagation in Periodic Media: Differential They Design[M]. Boca Raton: CRC Press, 2002.

    [10] G Quaranta, G Basset, O J F Martin. Recent advances in resonant waveguide gratings. Laser & Photonics Review, 12, 1800017.1-1800017.31(2018).

    [11] S S Wang, R Magnusson. Theory and applications of guided-mode resonance filters. Applied Optics, 32, 2606-2613(1993).

    [12] R Magnusson, S S Wang. New principle for optical filters. Applied Physical Letters, 61, 1022-1024(1992).

    [13] C J Chang-Hasnain. High-contrast gratings as a new platform for integrated optoelectronics. Semiconductor Science & Technology, 26, 014043(2010).

    [14] Li Zhu, Weijian Yang, C J ChangHasnain. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber. Optics Exp, 25, 18462-18473(2017).

    [15] V Karagodsky, F G Sedgwick, C J ChangHasnain. Theoretical analysis of subwavelength high contrast grating reflectors. Optics Express, 18, 16973-16988(2010).

    [16] C J Chang-Hasnain, W Yang. High-contrast gratings for integrated optoelectronics. Advances in Optics & Photonics, 4, 379-440(2012).

    [17] V Popov, F Boust, S N Burokur. Constructing the near field and far field with reactive metagratings: study on the degrees of freedom. Physical Review Applied, 11(2019).

    [18] Ra’di, Y, A Alù. Reconfigurable metagratings. ACS Photonics, 5, 1779-1785(2018).

    [19] Z Fan, M R Shcherbakov, M Allen. Perfect diffraction with multiresonant bianisotropic metagratings. ACS Photonics, 5, 4303-4311(2018).

    [20] Zilan Deng, Yaoyu Cao, Xiangping Li. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure: publisher's note. Photonics Research, 6, 6(2018).

    [21] D Sell, J Yang, S Doshay. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Letters, 17, 3752-3757(2017).

    [22] D Sell, J Yang, E W Wang. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces. ACS Photonics, 5, 2402-2407(2018).

    [23] E Khaidarov, H Hao, R Paniaguadominguez. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending. Nano Letters, 17, 6267-6272(2017).

    [24] ZiLan Deng, Junhong Deng, Xin Zhuang. Facile metagrating holograms with broadband and extreme angle tolerance. Light: Science & Applications, 7, 78(2018).

    [25] Epstein A, Rabinovich O. Perfect anomalous refraction with metagratings[C]European Conference on Antennas Propagation, 2018.

    [26] Yangyang Fu, Chen Shen, Yanyan Cao. Reversal of transmission and reflection based on acoustic metagratings with integer parity design. Nature Communications, 10, 2326-2332(2019).

    [27] Tan Shi, Yujie Wang, Zilan Deng. All‐dielectric kissing-dimer metagratings for asymmetric high diffraction. Advanced Optical Materials, 7, 1901389(2019).

    [28] Weinan Liu, Rui Chen, Weiyi Shi. Narrow-frequency sharp-angular filters using all-dielectric cascaded metagratings. Nanophotonics, 20200141(2020).

    [29] Lei Zhang, Shengtao Mei, Kun Huang. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 4, 818-833(2016).

    [30] N Bonod, J Neauport. Diffraction gratings: from principles to applications in high-intensity lasers. Advances in Optics & Photonics, 8, 156-199(2016).

    [31] J R Pierce. Coupling of modes of propagation. Journal of Applied Physics, 25, 179-183(1954).

    [32] Stéphane Collin. Nanostructure arrays in free-space: Optical properties and applications. Reports on Progress in Physics Physical Society, 77, 126402(2014).

    [33] G Quaranta, G Basset, O J F Martin. Recent advances in resonant waveguide gratings. Laser & Photonics Review, 12, 1800017(2018).

    [34] Zilan Deng, Shuang Zhang, Guoping Wang. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces. Nanoscale, 8, 1588(2016).

    [35] W Liu, Y S Kivshar. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Optics Express, 26, 13085-13105(2018).

    [36] C J Chang-Hasnain, W Yang. High-contrast gratings for integrated optoelectronics. Advances in Optics & Photonics, 4, 379-440(2012).

    [37] W Yang. High-contrast gratings for integrated optoelectronics. Advances in Optics and Photonics, 4, 379-440(2012).

    [38] Zhaorong Wang, Bo Zhang, Hui Deng. Dispersion engineering for vertical microcavities using subwavelength gratings. Physical Review Letters, 114, 073601(2015).

    [39] Wenxing Liu, Tianbao Yu, Yong Sun. Highly efficient broadband wave plates using dispersion-engineered high-index-contrast subwavelength gratings. Physical Review Applied, 11, 064005(2019).

    [40] Epstein A, Rabinovich O. Perfect anomalous refraction with metagratings[C]European Conference on Antennas Propagation, 2018.

    [41] V Popov, F Boust, S N Burokur. Controlling diffraction patterns with metagratings. Physical Review Applied, 10, 011002(2018).

    [42] O Rabinovich, I Kaplon, J Reis. Experimental demonstration and in-depth investigation of analytically designed anomalous reflection metagratings. Physical Review B, 99, 125101(2019).

    [43] A Epstein, O Rabinovich. Unveiling the properties of metagratings via a detailed analytical model for synthesis and analysis. Physical Review Applied, 8, 054037(2017).

    [44] O Rabinovich, A Epstein. Analytical design of printed circuit board (pcb) metagratings for perfect anomalous reflection. IEEE Transactions on Antennas and Propagation, 66, 4086-4095(2018).

    [45] V Popov, F Boust, S N Burokur. Constructing the near field and far field with reactive metagratings: study on the degrees of freedom. Physical Review Applied, 11, 024074(2019).

    [46] H Chalabi, Y Ra"Di, D L Sounas. Efficient anomalous reflection through near-field interactions in metasurfaces. Physical Review B, 96, 075432(2017).

    [47] A Patri, S Kenacohen, C Caloz. Large-angle, broadband and multifunctional directive waveguide scatterer gratings. ACS Photonics, 6, 3298-3305(2019).

    [48] J Yang, D Sell, J A Fan. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering. Annalen der Physik, 530, 1700302(2018).

    [49] W Liu, A E Miroshnichenko. Beam steering with dielectric metalattices. ACS Photonics, 5, 1733-1741(2018).

    [50] Weiyi Shi, Weimin Deng, Weinan Liu. Rectangular dielectric metagrating for high-efficiency diffraction with large-angle deflection. Chinese Optics Letters, 18, 073601(2020).

    [51] V Neder, Y Ra’di, A Alù. Combined metagratings for efficient broad-angle scattering metasurface. ACS Photonics, 6, 1010-1017(2019).

    [52] F Uleman, V Neder, A Cordaro. Resonant metagratings for spectral and angular control of light for colored rooftop photovoltaics. ACS Applied Energy Materials, 3, 3150-3156(2020).

    [53] K Tiefenthaler, W Lukosz. Integrated optical switches and gas sensors. Optics Letters, 9, 137(1984).

    [54] S M Norton, G M Morris, T Erdogan. Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models. Journal of The Optical Society of America A-Optics Image Science and Vision, 15, 464-472(1998).

    [55] J Yih, Y Chu, Y Mao. Optical waveguide biosensors constructed with subwavelength gratings. Applied Optics, 45, 1938-1942(2006).

    [56] Wawro D, Tibuleac S, Magnusson R, et al. Optical fiber endface biosens based on resonances in dielectric waveguide gratings[C]SPIE, 2000, 3911: 8694.

    [57] B T Cunningham, P Li, B Lin. Colorimetric resonant reflection as a direct biochemical assay technique. Sensors and Actuators B-chemical, 81, 316-328(2002).

    [58] B Lin, J Qiu, J Gerstenmeier. A label-free optical technique for detecting small molecule interactions. Biosensors and Bioelectronics, 17, 827-834(2002).

    [59] B T Cunningham, B Lin, J Qiu. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sensors and Actuators B-chemical, 85, 219-226(2002).

    [60] B T Cunningham, P Li, S C Schulz. Label-free assays on the bind system. Journal of Biomolecular Screening, 9, 481-490(2004).

    [61] Y Fang, A M Ferrie, N H Fontaine. Resonant waveguide grating biosensor for living cell sensing. Biophysical Journal, 91, 1925-1940(2006).

    [62] S M Omalley, X Xie, A G Frutos. Label-free high-throughput functional lytic assays. Journal of Biomolecular Screening, 12, 117-125(2007).

    [63] J Walia, N Dhindsa, M Khorasaninejad. Color generation and refractive index sensing using diffraction from 2d silicon nanowire arrays. Small, 10, 144-151(2014).

    [64] P G Hermannsson, C Vannahme, C L Smith. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths. Applied Physics Letters, 105, 071103(2014).

    [65] Yongjin Wang, Jiajia Chen, Zheng Shi. Suspended membrane GaN gratings for refractive index sensing. Applied Physics Express, 7, 052201(2014).

    [66] M Marciniak, M Gębski, M Dems. Subwavelength high contrast gratings as optical sensing elements. Scientific Bulletin. Physics / Technical University of Łódź, 38, 61-70(2017).

    [67] P K Sahoo, S Sarkar, J Joseph. High sensitivity guided-mode-resonance optical sensor employing phase detection. Scientific Reports, 7, 7607-7607(2017).

    [68] N Ganesh, W Zhang, P C Mathias. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nature Nanotechnology, 2, 515-520(2007).

    [69] N Ganesh, P C Mathias, W Zhang. Distance dependence of fluorescence enhancement from photonic crystal surfaces. Journal of Applied Physics, 103, 083104(2008).

    [70] H Kano, S Kawata. Two-photon-excited fluorescence enhanced by a surface plasmon.. Optics Letters, 21, 1848-1850(1996).

    [71] W Wenseleers, F Stellacci, T Meyerfriedrichsen. Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. Journal of Physical Chemistry B, 106, 6853-6863(2002).

    [72] S Soria, T Katchalski, E Teitelbaum. Enhanced two-photon fluorescence excitation by resonant grating waveguide structures. Optics Letters, 29, 1989-1991(2004).

    [73] Selle André, C Kappel, M A Bader. Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures. Optics Letters, 30, 1683-1685(2005).

    [74] S Soria, G Badenes, M A Bader. Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation. Applied Physics Letters, 87, 081109(2005).

    [75] A Thayil, A Muriano, J P Salvador. Nonlinear immunofluorescent assay for androgenic hormones based on resonant structures. Optics Express, 16, 13315-13322(2008).

    [76] Y Nazirizadeh, U Bog, S Sekula. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers. Optics Express, 18, 19120-19128(2010).

    [77] Y Nazirizadeh, V Behrends, A Prosz. Intensity interrogation near cutoff resonance for label-free cellular profiling. Scientific Reports, 6, 24685-24685(2016).

    [78] S Jahns, M Brau, B Meyer. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection.. Biomedical Optics Express, 6, 3724-3736(2015).

    [79] H Li, W Hsu, K Liu. A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities. Sensors and Actuators B-chemical, 371-380(2015).

    [80] Y Lin, W Hsieh, L Chau. Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection. Sensors and Actuators B-Chemical, 659-666(2017).

    [81] J M Mcmahon, J Henzie, T W Odom. Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Optics Express, 15, 18119-18129(2007).

    [82] L B Sun, X L Hu, Y Xu. Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films. Optics Communications, 333, 16-21(2014).

    [83] T W Ebbesen, H J Lezec, H F Ghaemi. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [84] H F Ghaemi, T Thio, D E Grupp. Surface plasmons enhance optical transmission through subwavelength holes. Physical Review B, 58, 6779-6782(1998).

    [85] Q Chen, D R Cumming. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Optics Express, 18, 14056-14062(2010).

    [86] Q Chen, D Das, D Chitnis. A CMOS image sensor integrated with plasmonic colour filters. Plasmonics, 7, 695-699(2012).

    [87] S Yokogawa, S P Burgos, H A Atwater. Plasmonic color filters for CMOS image sensor applications. Nano Letters, 12, 4349-4354(2012).

    [88] Q Chen, D Chitnis, K Walls. CMOS photodetectors integrated with plasmonic color filters. IEEE Photonics Technology Letters, 24, 197-199(2012).

    [89] S P Burgos, S Yokogawa, H A Atwater. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. ACS Nano, 7, 10038-10047(2013).

    [90] Y Horie, S Han, J Lee. Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated cmos image sensor technologies. Nano Letters, 17, 3159-3164(2017).

    [91] F F Mahani, A Mokhtari, M Mehran. Dual mode operation, highly selective nanohole array-based plasmonic colour filters. Nanotechnology, 28, 385203(2017).

    [92] L Tang, S Latif, D A Miller. Plasmonic device in silicon CMOS. Electronics Letters, 45, 706-708(2009).

    [93] E Balaur, C Sadatnajafi, S S Kou. Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels. Scientific Reports, 6, 28062-28062(2016).

    [94] Yan Yu, Qin Chen, Long Wen. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters. Optics Express, 23, 21994-22003(2015).

    [95] K Knop. Diffraction gratings for color filtering in the zero diffraction order. Applied Optics, 17, 3598-3603(1978).

    [96] N Ganesh, A Xiang, N B Beltran. Compact wavelength detection system incorporating a guided-mode resonance filter. Applied Physics Letters, 90, 81103(2007).

    [97] L Duempelmann, B Gallinet, L Novotny. Multispectral imaging with tunable plasmonic filters. ACS Photonics, 4, 236-241(2017).

    [98] B Zeng, Y Gao, F J Bartoli. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Scientific Reports, 3, 2840-2840(2013).

    [99] V R Shrestha, S Lee, E Kim. polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Scientific Reports, 5, 12450-12450(2015).

    [100] J Wang, Q Fan, S Zhang. Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency. Applied Physics Letters, 110, 31110(2017).

    [101] K Lee, J Y Jang, S J Park. Angle‐insensitive and CMOS-compatible subwavelength color printing. Advanced Optical Materials, 4, 1696-1702(2016).

    [102] I Koirala, V R Shrestha, C Park. All dielectric transmissive structural multicolor pixel incorporating a resonant grating in hydrogenated amorphous silicon.. Scientific Reports, 7, 13574(2017).

    [103] I Koirala, V R Shrestha, C Park. Polarization-controlled broad color palette based on an ultrathin one-dimensional resonant grating structure. Scientific Reports, 7, 40073(2017).

    [104] K B Crozier, K Seo, H Park. controlling the light absorption in a photodetector via nanowire waveguide resonances for multispectral and color imaging. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-12(2018).

    [105] K Seo, M Wober, P Steinvurzel. Multicolored vertical silicon nanowires. Nano Letters, 11, 1851-1856(2011).

    [106] H Park, Y Dan, K Seo. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Letters, 14, 1804-1809(2014).

    [107] J Yoon, K Kim, M Meyyappan. Optical characteristics of silicon-based asymmetric vertical nanowire photodetectors. IEEE Transactions on Electron Devices, 64, 2261-2266(2017).

    [108] W Yue, S Gao, S Lee. Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity. Scientific Reports, 6, 29756-29756(2016).

    [109] C Park, V R Shrestha, W Yue. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Scientific Reports, 7, 2556-2556(2017).

    [110] C Park, I Koirala, S Gao. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks. Optics Express, 27, 667-679(2019).

    [111] M Miyata, M Nakajima, T Hashimoto. High-sensitivity color imaging using pixel-scale color splitters based on dielectric metasurfaces. ACS Photonics, 6, 1442-1450(2019).

    [112] V Vashistha, G Vaidya, P Gruszecki. Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas. Scientific Reports, 7, 8092(2017).

    [113] Bo Yang, Wenwei Liu, Zhancheng Li. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Advanced Optical Materials, 6, 1701009(2018).

    [114] A Dan, H C Barshilia, K Chattopadhyay. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review. Renewable & Sustainable Energy Reviews, 79, 1050-1077(2017).

    [115] I Khodasevych, L Wang, A Mitchell. Micro- and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 3, 852-881(2015).

    [116] Yanxia Cui, Yingran He, Yi Jin. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser & Photonics Reviews, 8, 495-520(2014).

    [117] Bin Zhao, Mingke Hu, Xianze Ao. Radiative cooling: A review of fundamentals, materials, applications, and prospects. Applied Energy, 489-513(2019).

    [118] Yanxia Cui, Kung Hin Fung, Jun Xu. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial sab. Nano Letters, 12, 1443-1447(2012).

    [119] Yuyin Li, Zhengqi Liu, Houjiao Zhang. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Optics Express, 27, 11809-11818(2019).

    [120] Junyu Li, Li Bao, Shun Jiang. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging. Optics Express, 27, 8375-8386(2019).

    [121] H Lin, B C Sturmberg, K Lin. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nature Photonics, 13, 270-276(2019).

    [122] M Luo, S Shen, L Zhou. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Optics Express, 25, 16715-16724(2017).

    [123] X Han, K He, Z He. Tungsten-based highly selective solar absorber using simple nanodisk array. Optics Express, 25, A1072-A1078(2017).

    [124] M G Nielsen, A Pors, O Albrektsen. Efficient absorption of visible radiation by gap plasmon resonators. Optics Express, 20, 13311-13319(2012).

    [125] S A Mann, E C Garnett. Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells. ACS Photonics, 2, 816-821(2015).

    [126] C Chang, W J Kortkamp, J Nogan. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Letters, 18, 7665-7673(2018).

    [127] Nan Zhang, Peihong Cheng Dengmu Zhou. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. Optics Letters, 38, 1125-1127(2013).

    [128] A Cattoni, P Ghenuche, A M Haghirigosnet. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography. Nano Letters, 11, 3557-3563(2011).

    [129] Bo Zhao, Liping Wang, Yong Shuai. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 67, 637-645(2013).

    [130] B Zhang, J Hendrickson, J Guo. Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. Journal of the Optical Society of America B, 30, 656(2013).

    [131] Nan Zhang, Peiheng Zhou, Shuya Wang. Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Optics Communications, 338, 388-392(2015).

    [132] C Wu, B Neuner, G Shvets. Large-area, wide-angle, spectrally selective plasmonic absorber. Physical Review B, 84, 075102(2011).

    [133] L Lei, S Li, H Huang. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.. Optics Express, 26, 5686-5693(2018).

    [134] S Kang, Z Qian, V Rajaram. Ultra‐narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy. Advanced Optical Materials, 7, 1801236.1-1801236.8(2019).

    [135] S Butun, K Aydin. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Optics Express, 22, 19457-19468(2014).

    [136] X Liu, T Tyler, T Starr. Taming the blackbody with infrared metamaterials as selective thermal emitters.. Physical Review Letters, 107, 045901(2011).

    [137] Wei Ma, Yongzheng Wen, Xiaomei Yu. Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Optics Express, 21, 30724-30730(2013).

    [138] J Grant, I J Mccrindle, C Li. Multispectral metamaterial absorber. Optics Letters, 39, 1227-1230(2014).

    [139] K Aydin, V E Ferry, R M Briggs. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2, 517(2011).

    [140] W Li, U Guler, N Kinsey. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials, 26, 7959-7965(2014).

    [141] A Nagarajan, K Vivek, M Shah. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration. Advanced Optical Materials, 6, 1800253(2018).

    [142] N Muhammad, X Tang, F Tao. Broadband polarization-insensitive absorption by metasurface with metallic pieces for energy harvesting application. Materials Science and Engineering B-advanced Functional Solid-state Materials, 249, 114419(2019).

    [143] Jign Liu, Wei Chen, Jiachun Zheng. Wide-angle polarization-independent ultra-broadband absorber from visible to infrared. Nanomaterials, 10, 27(2019).

    [144] Dong Wu, Chang Liu, Yumin Liu. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Optics Letters, 42, 450-453(2017).

    [145] Z Liu, P Tang, X Liu. Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology, 30, 305203(2019).

    [146] Kequn Chi, Liu Yang, Zhaolang Liu. Large-scale nanostructured low-temperature solar selective absorber. Optics Letters, 42, 1891-1894(2017).

    [147] K Chi, L Yang, S He. Ultrathin nanostructured solar selective absorber based on a two-dimensional hemispherical shell array. Applied Physics Letters, 112, 063903(2018).

    [148] Z Zhang, Y Mo, H Wang. High-performance and cost-effective absorber for visible and near-infrared spectrum based on a spherical multilayered dielectric–metal structure. Applied Optics, 58, 4467-4473(2019).

    [149] Q Ding, S F Barna, K Jacobs. Feasibility analysis of nanostructured planar focusing collectors for concentrating solar power applications. ACS Applied Energy Materials, 1, 6927-6935(2018).

    [150] Shangliang Wu, Yan Ye, Zhouying Jiang. Large‐area, ultrathin metasurface exhibiting strong unpolarized ultrabroadband absorption. Advanced Optical Materials, 7, 1901162(2019).

    [151] Weijian Yang, Tianbo Sun, Yi Rao. High speed optical phased array using high contrast grating all-pass filters.. Optics Express, 22, 20038-20044(2014).

    [152] Ziying Zhang, Ming Kang, Xueqian Zhang. Coherent perfect diffraction in metagratings. Advanced Materials, 32, 2002341(2020).

    Rui Chen, Xia Liu, Hong Wang, Weiyi Shi, Weinan Liu, Shaoji Jiang, Jianwen Dong. From subwavelength grating to metagrating: principle, design and applications[J]. Infrared and Laser Engineering, 2020, 49(9): 20201039
    Download Citation