• Photonics Research
  • Vol. 9, Issue 11, 11002176 (2021)
Guo-Wei Zhang1、2, Yu-Yang Ding3、6、*, Wei Chen1、2、7、*, Fang-Xiang Wang1、2, Peng Ye1、2, Guan-Zhong Huang1、2, Shuang Wang1、2, Zhen-Qiang Yin1、2, Jun-Ming An4、5, Guang-Can Guo1、2, and Zheng-Fu Han1、2
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3Hefei Guizhen Chip Technologies Co., Ltd., Hefei 230000, China
  • 4State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 5Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6e-mail: dingyuyang@gz-ichip.com
  • 7e-mail: weich@ustc.edu.cn
  • show less
    References
    [1] T. Yoshizawa. Handbook of Optical Metrology: Principles and Applications(2017).
    [2] T. Okoshi, K. Kikuchi. Coherent Optical Fiber Communications(1988).
    [3] I. Ali Khan, J. C. Howell. Experimental demonstration of high two-photon time-energy entanglement. Phys. Rev. A, 73, 031801(2006).
    [4] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).
    [5] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci., 560, 7-11(2014).
    [6] H.-K. Lo, M. Curty, K. Tamaki. Secure quantum key distribution. Nat. Photonics, 8, 595-604(2014).
    [7] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).
    [8] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger. Experimental quantum teleportation. Nature, 390, 575-579(1997).
    [9] H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett., 81, 5932-5935(1998).
    [10] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).
    [11] J. C. Adcock, C. Vigliar, R. Santagati, J. W. Silverstone, M. G. Thompson. Programmable four-photon graph states on a silicon chip. Nat. Commun., 10, 3528(2019).
    [12] S. Paesani, Y. Ding, R. Santagati, L. Chakhmakhchyan, C. Vigliar, K. Rottwitt, L. K. Oxenløwe, J. Wang, M. G. Thompson, A. Laing. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys., 15, 925-929(2019).
    [13] S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, Z.-F. Han. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express, 22, 21739-21756(2014).
    [14] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).
    [15] Y.-Y. Ding, H. Chen, S. Wang, D.-Y. He, Z.-Q. Yin, W. Chen, Z. Zhou, G.-C. Guo, Z.-F. Han. Polarization variations in installed fibers and their influence on quantum key distribution systems. Opt. Express, 25, 27923-27936(2017).
    [16] L. Ma, H. Xu, X. Tang. Polarization recovery and auto-compensation in quantum key distribution network. Proc. SPIE, 6305, 630513(2006).
    [17] A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, A. J. Shields. High speed prototype quantum key distribution system and long term field trial. Opt. Express, 23, 7583-7592(2015).
    [18] Y.-Y. Ding, W. Chen, H. Chen, C. Wang, Y.-P. Li, S. Wang, Z.-Q. Yin, G.-C. Guo, Z.-F. Han. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits. Opt. Lett., 42, 1023-1026(2017).
    [19] H. Zbinden, J. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel. Interferometry with Faraday mirrors for quantum cryptography. Electron. Lett., 33, 586-588(1997).
    [20] S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, C. Hui, P.-L. Hao, G.-J. Fan-Yuan, C. Wang, L.-J. Zhang, J. Kuang, S.-F. Liu, Z. Zhou, Y.-G. Wang, G.-C. Guo, Z.-F. Han. Practical gigahertz quantum key distribution robust against channel disturbance. Opt. Lett., 43, 2030-2033(2018).
    [21] N. Gisin, S. Fasel, B. Kraus, H. Zbinden, G. Ribordy. Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A, 73, 022320(2006).
    [22] A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. Perrenoud, G. Gras, F. Bussières, M.-J. Li, D. Nolan, A. Martin, H. Zbinden. Secure quantum key distribution over 421  km of optical fiber. Phys. Rev. Lett., 121, 190502(2018).
    [23] A. Politi, J. Matthews, M. Thompson, J. O’Brien. Integrated quantum photonics. IEEE J. Sel. Top. Quantum Electron., 15, 1673-1684(2009).
    [24] S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, V. M. Shalaev. Material platforms for integrated quantum photonics. Opt. Mater. Express, 7, 111-132(2017).
    [25] S. Slussarenko, G. J. Pryde. Photonic quantum information processing: a concise review. Appl. Phys. Rev., 6, 041303(2019).
    [26] Y. Nambu, K. Yoshino, A. Tomita. Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit. J. Mod. Opt., 55, 1953-1970(2008).
    [27] P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, M. G. Thompson. Integrated silicon photonics for high-speed quantum key distribution. Optica, 4, 172-177(2017).
    [28] D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, D. Englund. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X, 8, 021009(2018).
    [29] Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, L. K. Oxenløwe. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf., 3, 25(2017).
    [30] H. Semenenko, P. Sibson, A. Hart, M. G. Thompson, J. G. Rarity, C. Erven. Chip-based measurement-device-independent quantum key distribution. Optica, 7, 238-242(2020).
    [31] L. Cao, W. Luo, Y. Wang, J. Zou, R. Yan, H. Cai, Y. Zhang, X. Hu, C. Jiang, W. Fan, X. Zhou, B. Dong, X. Luo, G. Lo, Y. Wang, Z. Xu, S. Sun, X. Wang, Y. Hao, Y. Jin, D. Kwong, L. Kwek, A. Liu. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl., 14, 011001(2020).
    [32] X. Li, X. Li, M. Ren, J. Zhang, L. Wang, W. Chen, Y. Wang, X. Yin, Y. Wu, Y. Wu, J. An, J. An. Interference at the single-photon level based on silica photonics robust against channel disturbance. Photon. Res., 9, 222-228(2021).
    [33] I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, W. Tittel. Proof-of-concept of real-world quantum key distribution with quantum frames. New J. Phys., 11, 095001(2009).
    [34] W. H. McMaster. Polarization and the Stokes parameters. Am. J. Phys., 22, 351-362(1954).
    [35] Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, A. J. Shields. Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications. Phys. Rev. Appl., 2, 064006(2014).
    Copy Citation Text
    Guo-Wei Zhang, Yu-Yang Ding, Wei Chen, Fang-Xiang Wang, Peng Ye, Guan-Zhong Huang, Shuang Wang, Zhen-Qiang Yin, Jun-Ming An, Guang-Can Guo, Zheng-Fu Han. Polarization-insensitive interferometer based on a hybrid integrated planar light-wave circuit[J]. Photonics Research, 2021, 9(11): 11002176
    Download Citation
    Category: Integrated Optics
    Received: May. 25, 2021
    Accepted: Aug. 25, 2021
    Published Online: Oct. 9, 2021
    The Author Email: Yu-Yang Ding (dingyuyang@gz-ichip.com), Wei Chen (weich@ustc.edu.cn)