• Photonics Research
  • Vol. 7, Issue 6, A14 (2019)
Chuan Xu1, Lidan Zhang1, Songtao Huang1, Taxue Ma1, Fang Liu1、2, Hidehiro Yonezawa3, Yong Zhang1、*, and Min Xiao1、4、5
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University, Nanjing 210093, China
  • 2Department of Physics, Nanjing Tech University, Nanjing 211816, China
  • 3Centre for Quantum Computation and Communication Technology, School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia
  • 4Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • 5e-mail: mxiao@uark.edu
  • show less
    DOI: 10.1364/PRJ.7.000A14 Cite this Article Set citation alerts
    Chuan Xu, Lidan Zhang, Songtao Huang, Taxue Ma, Fang Liu, Hidehiro Yonezawa, Yong Zhang, Min Xiao. Sensing and tracking enhanced by quantum squeezing[J]. Photonics Research, 2019, 7(6): A14 Copy Citation Text show less
    References

    [1] S. L. Braunstein, H. J. Kimble. Teleportation of continuous quantum variables. Phys. Rev. Lett., 80, 869-872(1998).

    [2] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik. Unconditional quantum teleportation. Science, 282, 706-709(1998).

    [3] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, M. A. Nielsen. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett., 97, 110501(2006).

    [4] T. Aoki, G. Takahashi, T. Kajiya, J.-I. Yoshikawa, S. L. Braunstein, P. van Loock, A. Furusawa. Quantum error correction beyond qubits. Nat. Phys., 5, 541-546(2009).

    [5] M. Lassen, M. Sabuncu, A. Huck, J. Niset, G. Leuchs, N. J. Cerf, U. L. Andersen. Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code. Nat. Photonics, 4, 700-705(2010).

    [6] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, P. Grangier. Generating optical Schrodinger kittens for quantum information processing. Science, 312, 83-86(2006).

    [7] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, E. S. Polzik. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett., 97, 083604(2006).

    [8] U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, A. Furusawa. Hybrid discrete- and continuous-variable quantum information. Nat. Phys., 11, 713-719(2015).

    [9] M. I. Kolobov, C. Fabre. Quantum limits on optical resolution. Phys. Rev. Lett., 85, 3789-3792(2000).

    [10] N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H. A. Bachor, C. Fabre. Surpassing the standard quantum limit for optical imaging using nonclassical multimode light. Phys. Rev. Lett., 88, 203601(2002).

    [11] F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojevic, M. Koschorreck, M. W. Mitchell. Squeezed-light optical magnetometry. Phys. Rev. Lett., 105, 053601(2010).

    [12] H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa, S. Takeda, H. Arao, K. Ohki, K. Tsumura, D. W. Berry, T. C. Ralph, H. M. Wiseman, E. H. Huntington, A. Furusawa. Quantum-enhanced optical-phase tracking. Science, 337, 1514-1517(2012).

    [13] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W. P. Bowen. Biological measurement beyond the quantum limit. Nat. Photonics, 7, 229-233(2013).

    [14] The LIGO. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics, 7, 613-619(2013).

    [15] N. Otterstrom, R. C. Pooser, B. J. Lawrie. Nonlinear optical magnetometry with accessible in situ optical squeezing. Opt. Lett., 39, 6533-6536(2014).

    [16] A. A. Berni, T. Gehring, B. M. Nielsen, V. Händchen, M. G. A. Paris, U. L. Andersen. Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nat. Photonics, 9, 577-581(2015).

    [17] J. Liu, W. Liu, S. Li, D. Wei, H. Gao, F. Li. Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1,1) interferometers. Photon. Res., 5, 617-622(2017).

    [18] L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57, 2520-2523(1986).

    [19] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett., 55, 2409-2412(1985).

    [20] C. F. McCormick, A. M. Marino, V. Boyer, P. D. Lett. Strong low-frequency quantum correlations from a four-wave-mixing amplifier. Phys. Rev. A, 78, 043816(2008).

    [21] Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, T. Coudreau. Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: quantum beam splitter for photons. Phys. Rev. A, 84, 053826(2011).

    [22] D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, M. Xiao. Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media. Phys. Rev. A, 96, 043847(2017).

    [23] M. Rosenbluh, R. M. Shelby. Squeezed optical solitons. Phys. Rev. Lett., 66, 153-156(1991).

    [24] S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, G. Leuchs. Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer. Phys. Rev. Lett., 81, 2446-2449(1998).

    [25] R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, G. Leuchs. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers. Opt. Lett., 33, 116-118(2008).

    [26] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, O. Painter. Squeezed light from a silicon micromechanical resonator. Nature, 500, 185-189(2013).

    [27] T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, C. A. Regal. Strong optomechanical squeezing of light. Phys. Rev. X, 3, 031012(2013).

    [28] T. Boulier, M. Bamba, A. Amo, C. Adrados, A. Lemaitre, E. Galopin, I. Sagnes, J. Bloch, C. Ciuti, E. Giacobino, A. Bramati. Polariton-generated intensity squeezing in semiconductor micropillars. Nat. Commun., 5, 3260(2014).

    [29] A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, M. Lipson. On-chip optical squeezing. Phys. Rev. Appl., 3, 044005(2015).

    [30] M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, C. Silberhorn. Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl., 7, 044026(2017).

    [31] S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, A. Furusawa. 7  dB quadrature squeezing at 860  nm with periodically poled KTiOPO4. Appl. Phys. Lett., 89, 061116(2006).

    [32] H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, R. Schnabel. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett., 100, 033602(2008).

    [33] H. Vahlbruch, M. Mehmet, K. Danzmann, R. Schnabel. Detection of 15  dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett., 117, 110801(2016).

    [34] N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, P. K. Lam. A quantum laser pointer. Science, 301, 940-943(2003).

    [35] The LIGO. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys., 7, 962-965(2011).

    [36] M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, R. Schnabel. Demonstration of a quantum-enhanced fiber Sagnac interferometer. Opt. Lett., 35, 1665-1667(2010).

    [37] F. Liu, Y. Zhou, J. Yu, J. Guo, Y. Wu, S. Xiao, D. Wei, Y. Zhang, X. Jia, M. Xiao. Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement. Appl. Phys. Lett., 110, 021106(2017).

    [38] K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, N. Mavalvala. A quantum-enhanced prototype gravitational-wave detector. Nat. Phys., 4, 472-476(2008).

    [39] Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, J. Jing. Experimental generation of multiple quantum correlated beams from hot rubidium vapor. Phys. Rev. Lett., 113, 023602(2014).

    [40] G. Abdisa, I. Ahmed, X. Wang, Z. Liu, H. Wang, Y. Zhang. Controllable hybrid shape of correlation and squeezing. Phys. Rev. A, 94, 023849(2016).

    [41] H. Chen, X. Zhang, D. Zhu, C. Yang, T. Jiang, H. Zheng, Y. Zhang. Dressed four-wave mixing second-order Talbot effect. Phys. Rev. A, 90, 043846(2014).

    [42] Z. Y. Ou, S. F. Pereira, H. J. Kimble, K. C. Peng. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett., 68, 3663-3666(1992).

    [43] X. Su, Y. Zhao, S. Hao, X. Jia, C. Xie, K. Peng. Experimental preparation of eight-partite cluster state for photonic qumodes. Opt. Lett., 37, 5178-5180(2012).

    [44] V. Boyer, A. M. Marino, R. C. Pooser, P. D. Lett. Entangled images from four-wave mixing. Science, 321, 544-547(2008).

    [45] M. Lassen, G. Leuchs, U. L. Andersen. Continuous variable entanglement and squeezing of orbital angular momentum states. Phys. Rev. Lett., 102, 163602(2009).

    [46] J. Janousek, K. Wagner, J. F. Morizur, N. Treps, P. K. Lam, C. C. Harb, H. A. Bachor. Optical entanglement of co-propagating modes. Nat. Photonics, 3, 399-402(2009).

    [47] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, N. Treps. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 8, 109-112(2014).

    [48] M. Chen, N. C. Menicucci, O. Pfister. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett., 112, 120505(2014).

    [49] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, C. Fabre. Full multipartite entanglement of frequency-comb Gaussian states. Phys. Rev. Lett., 114, 050501(2015).

    [50] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-I. Yoshikawa, H. Yonezawa, N. C. Menicucci, A. Furusawa. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics, 7, 982-986(2013).

    [51] C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Fortsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. Russell, G. Leuchs. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes. Phys. Rev. Lett., 106, 060502(2011).

    [52] K. Liu, J. Guo, C. Cai, S. Guo, J. Gao. Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator. Phys. Rev. Lett., 113, 170501(2014).

    [53] A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, P. Nussenzveig. Three-color entanglement. Science, 326, 823-826(2009).

    [54] F. A. S. Barbosa, A. S. Coelho, L. F. Muñoz-Martínez, L. Ortiz-Gutiérrez, A. S. Villar, P. Nussenzveig, M. Martinelli. Hexapartite entanglement in an above-threshold optical parametric oscillator. Phys. Rev. Lett., 121, 073601(2018).

    [55] C. Fabre, J. B. Fouet, A. Maître. Quantum limits in the measurement of very small displacements in optical images. Opt. Lett., 25, 76-78(2000).

    [56] B. Yurke, S. L. McCall, J. R. Klauder. SU(2) and SU(1,1) interferometers. Phys. Rev. A, 33, 4033-4054(1986).

    [57] M. J. Holland, K. Burnett. Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett., 71, 1355-1358(1993).

    [58] G. M. D’Ariano, M. F. Sacchi. Two-mode heterodyne phase detection. Phys. Rev. A, 52, R4309-R4312(1995).

    [59] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, G. J. Pryde. Entanglement-free Heisenberg-limited phase estimation. Nature, 450, 393-396(2007).

    [60] I. Afek, O. Ambar, Y. Silberberg. High-NOON states by mixing quantum and classical light. Science, 328, 879-881(2010).

    [61] Z. Y. Ou. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer. Phys. Rev. A, 85, 023815(2012).

    [62] F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, W. Zhang. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun., 5, 3049(2014).

    [63] D. F. Walls. Squeezed states of light. Nature, 306, 141-146(1983).

    [64] G. J. Milburn, M. D. Levenson, R. M. Shelby, S. H. Perlmutter, R. G. Devoe, D. F. Walls. Optical-fiber media for squeezed-state generation. J. Opt. Soc. Am. B, 4, 1476-1489(1987).

    [65] S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall. Generation of squeezed light by intracavity frequency doubling. Phys. Rev. A, 38, 4931-4934(1988).

    [66] W. H. Richardson, S. Machida, Y. Yamamoto. Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser. Phys. Rev. Lett., 66, 2867-2870(1991).

    [67] Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa. Observation of −9  dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express, 15, 4321-4327(2007).

    [68] J. Bauchrowitz, T. Westphal, R. Schnabel. A graphical description of optical parametric generation of squeezed states of light. Am. J. Phys., 81, 767-771(2013).

    [69] G. Breitenbach, S. Schiller, J. Mlynek. Measurement of the quantum states of squeezed light. Nature, 387, 471-475(1997).

    [70] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693-1708(1981).

    [71] M. Xiao, L. A. Wu, H. J. Kimble. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett., 59, 278-281(1987).

    [72] P. Grangier, R. E. Slusher, B. Yurke, A. LaPorta. Squeezed-light-enhanced polarization interferometer. Phys. Rev. Lett., 59, 2153-2156(1987).

    [73] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker. LIGO: the laser interferometer gravitational-wave observatory. Science, 256, 325-333(1992).

    [74] Y. Q. Li, P. Lynam, M. Xiao, P. J. Edwards. Sub-shot-noise laser Doppler anemometry with amplitude-squeezed light. Phys. Rev. Lett., 78, 3105-3108(1997).

    [75] C. A. J. Putman, B. G. De Grooth, N. F. Van Hulst, J. Greve. A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. J. Appl. Phys., 72, 6-12(1992).

    [76] A. C. Boccara, D. Fournier, J. Badoz. Thermo-optical spectroscopy: detection by the ‘mirage effect’. Appl. Phys. Lett., 36, 130-132(1980).

    [77] J. W. Tay, M. T. L. Hsu, W. P. Bowen. Quantum limited particle sensing in optical tweezers. Phys. Rev. A, 80, 063806(2009).

    [78] T. L. H. Magnus, D. Vincent, L. Ping Koy, P. B. Warwick. Optimal optical measurement of small displacements. J. Opt. B, 6, 495-501(2004).

    [79] V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, H. A. Bachor. TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme. Phys. Rev. A, 74, 053823(2006).

    [80] H.-X. Sun, Z.-L. Liu, K. Liu, R.-G. Yang, J.-X. Zhang, J.-R. Gao. Experimental demonstration of a displacement measurement of an optical beam beyond the quantum noise limit. Chin. Phys. Lett., 31, 084202(2014).

    [81] S. M. Barnett, D. T. Pegg. Quantum theory of rotation angles. Phys. Rev. A, 41, 3427-3435(1990).

    [82] S. M. Barnett, R. Zambrini. Resolution in rotation measurements. J. Mod. Opt., 53, 613-625(2006).

    [83] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [84] J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett., 80, 3217-3219(1998).

    [85] M. P. J. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [86] S. Xiao, L. Zhang, D. Wei, F. Liu, Y. Zhang, M. Xiao. Orbital angular momentum-enhanced measurement of rotation vibration using a Sagnac interferometer. Opt. Express, 26, 1997-2005(2018).

    [87] K. Liu, C. X. Cai, J. Li, L. Ma, H. X. Sun, J. R. Gao. Squeezing-enhanced rotating-angle measurement beyond the quantum limit. Appl. Phys. Lett., 113, 261103(2018).

    [88] V. Giovannetti, S. Lloyd, L. Maccone. Advances in quantum metrology. Nat. Photonics, 5, 222-229(2011).

    [89] J. P. Dowling, K. P. Seshadreesan. Quantum optical technologies for metrology, sensing, and imaging. J. Lightwave Technol., 33, 2359-2370(2015).

    [90] H. M. Wiseman. Adaptive phase measurements of optical modes: going beyond the marginal Q distribution. Phys. Rev. Lett., 75, 4587-4590(1995).

    [91] D. T. Pope, H. M. Wiseman, N. K. Langford. Adaptive phase estimation is more accurate than nonadaptive phase estimation for continuous beams of light. Phys. Rev. A, 70, 043812(2004).

    [92] G. Masada. Current development of experimental investigation of squeezed light and its applications. Proc. SPIE, 9269, 92690B(2014).

    [93] U. L. Andersen, T. Gehring, C. Marquardt, G. Leuchs. 30 years of squeezed light generation. Phys. Scr., 91, 053001(2016).

    [94] D. W. Berry, H. M. Wiseman. Adaptive phase measurements for narrowband squeezed beams. Phys. Rev. A, 73, 063824(2006).

    [95] D. W. Berry, H. M. Wiseman. Adaptive quantum measurements of a continuously varying phase. Phys. Rev. A, 65, 043803(2002).

    [96] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, H. Mabuchi. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett., 89, 133602(2002).

    [97] T. Wheatley, D. Berry, H. Yonezawa, D. Nakane, H. Arao, D. Pope, T. Ralph, H. Wiseman, A. Furusawa, E. Huntington. Adaptive optical phase estimation using time-symmetric quantum smoothing. Phys. Rev. Lett., 104, 093601(2010).

    [98] K. Iwasawa, K. Makino, H. Yonezawa, M. Tsang, A. Davidovic, E. Huntington, A. Furusawa. Quantum-limited mirror-motion estimation. Phys. Rev. Lett., 111, 163602(2013).

    [99] D. Budker, M. Romalis. Optical magnetometry. Nat. Phys., 3, 227-234(2007).

    [100] G. M. Harry, I. Jin, H. J. Paik, T. R. Stevenson, F. C. Wellstood. Two-stage superconducting-quantum-interference-device amplifier in a high-Q gravitational wave transducer. Appl. Phys. Lett., 76, 1446-1448(2000).

    [101] R. McDermott, A. H. Trabesinger, M. Mück, E. L. Hahn, A. Pines, J. Clarke. Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science, 295, 2247-2249(2002).

    [102] E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, F. J. Varela. Perception’s shadow: long-distance synchronization of human brain activity. Nature, 397, 430-433(1999).

    [103] D. V. Kupriyanov, I. M. Sokolov. Optical-detection of magnetic-resonance by classical and squeezed light. Quantum Opt, 4, 55-70(1992).

    [104] J. M. Geremia, J. K. Stockton, H. Mabuchi. Suppression of spin projection noise in broadband atomic magnetometry. Phys. Rev. Lett., 94, 203002(2005).

    [105] W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, E. S. Polzik. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett., 104, 133601(2010).

    [106] J. M. Geremia, J. K. Stockton, A. C. Doherty, H. Mabuchi. Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. Phys. Rev. Lett., 91, 250801(2003).

    [107] A. Kuzmich, L. Mandel, N. P. Bigelow. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett., 85, 1594-1597(2000).

    [108] M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, V. V. Yashchuk. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?. Phys. Rev. Lett., 93, 173002(2004).

    [109] H. C. Seton, J. M. S. Hutchison, D. M. Bussell. Liquid helium cryostat for SQUID-based MRI receivers. Cryogenics, 45, 348-355(2005).

    [110] D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys., 74, 1153-1201(2002).

    [111] D. Budker, V. Yashchuk, M. Zolotorev. Nonlinear magneto-optic effects with ultranarrow widths. Phys. Rev. Lett., 81, 5788-5791(1998).

    [112] M. Koschorreck, M. Napolitano, B. Dubost, M. W. Mitchell. Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett., 104, 093602(2010).

    [113] W. P. Bowen, R. Schnabel, H.-A. Bachor, P. K. Lam. Polarization squeezing of continuous variable stokes parameters. Phys. Rev. Lett., 88, 093601(2002).

    [114] N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, C. Silberhorn. Polarization squeezing and continuous-variable polarization entanglement. Phys. Rev. A, 65, 052306(2002).

    [115] T. Horrom, R. Singh, J. P. Dowling, E. E. Mikhailov. Quantum-enhanced magnetometer with low-frequency squeezing. Phys. Rev. A, 86, 023803(2012).

    [116] V. G. Lucivero, R. Jiménez-Martínez, J. Kong, M. W. Mitchell. Squeezed-light spin noise spectroscopy. Phys. Rev. A, 93, 053802(2016).

    [117] A. Sandage. The case for H0 roughly 55 from the 21 centimeter linewidth absolute magnitude relation for field galaxies. Astrophys. J., 331, 605-619(1988).

    [118] LIGO Scientific. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102(2016).

    [119] LIGO Scientific. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119, 161101(2017).

    [120] P. Meystre, R. W. P. Drever, J. Hought, M. O. Scully, A. J. Munley, S. A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brooks, Y. Gursel. Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects. Quantum Optics, Experimental Gravity, and Measurement Theory, 503-514(1983).

    [121] B. J. Meers. Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D, 38, 2317-2326(1988).

    [122] G. Heinzel, J. Mizuno, R. Schilling, W. Winkler, A. Rudiger, K. Danzmann. An experimental demonstration of resonant sideband extraction for laser-interferometric gravitational wave detectors. Phys. Lett. A, 217, 305-314(1996).

    [123] R. Schnabel. Squeezed states of light and their applications in laser interferometers. Phys. Rep. Rev. Sec. Phys. Lett., 684, 1-51(2017).

    [124] M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker, N. Beveridge, S. Birindelli, S. Bose, L. Bosi, S. Braccini, C. Bradaschia, T. Bulik, E. Calloni, G. Cella, E. C. Mottin, S. Chelkowski, A. Chincarini, J. Clark, E. Coccia, C. Colacino, J. Colas, A. Cumming, L. Cunningham, E. Cuoco, S. Danilishin, K. Danzmann, G. De Luca, R. De Salvo, T. Dent, R. Derosa, L. Di Fiore, A. Di Virgilio, M. Doets, V. Fafone, P. Falferi, R. Flaminio, J. Franc, F. Frasconi, A. Freise, P. Fulda, J. Gair, G. Gemme, A. Gennai, A. Giazotto, K. Glampedakis, M. Granata, H. Grote, G. Guidi, G. Hammond, M. Hannam, J. Harms, D. Heinert, M. Hendry, I. Heng, E. Hennes, S. Hild, J. Hough, S. Husa, S. Huttner, G. Jones, F. Khalili, K. Kokeyama, K. Kokkotas, B. Krishnan, M. Lorenzini, H. Luck, E. Majorana, I. Mandel, V. Mandic, I. Martin, C. Michel, Y. Minenkov, N. Morgado, S. Mosca, B. Mours, H. Muller-Ebhardt, P. Murray, R. Nawrodt, J. Nelson, R. Oshaughnessy, C. D. Ott, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti, D. Passuello, L. Pinard, R. Poggiani, P. Popolizio, M. Prato, P. Puppo, D. Rabeling, P. Rapagnani, J. Read, T. Regimbau, H. Rehbein, S. Reid, L. Rezzolla, F. Ricci, F. Richard, A. Rocchi, S. Rowan, A. Rüdiger, B. Sassolas, B. Sathyaprakash, R. Schnabe, C. Schwarz, P. Seidel, A. Sintes, K. Somiya, F. Speirits, K. Strain, S. Strigin, P. Sutton, S. Tarabrin, J. van den Brand, C. van Leewen, M. van Vegge, C. van den Broeck, A. Vecchio, J. Veitch, F. Vetrano, A. Vicere, S. Vyatchanin, B. Willke, G. Woan, P. Wolfango, K. Yamamoto. The third generation of gravitational wave observatories and their science reach. Class. Quantum Gravity, 27, 084007(2010).

    [125] H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, S. P. Vyatchanin. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D, 65, 022002(2001).

    [126] E. Oelker, T. Isogai, J. Miller, M. Tse, L. Barsotti, N. Mavalvala, M. Evans. Audio-band frequency-dependent squeezing for gravitational-wave detectors. Phys. Rev. Lett., 116, 041102(2016).

    [127] S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, R. Schnabel. Quantum-dense metrology. Nat. Photonics, 7, 626-630(2013).

    [128] G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale. Probing the ultimate limit of fiber-optic strain sensing. Science, 330, 1081-1084(2010).

    [129] B. Culshaw. The optical fibre Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol., 17, R1-R16(2006).

    [130] C. Xia, D. Wang, Y. Wu, J. Guo, F. Liu, Y. Zhang, M. Xiao. Continuous-variable entanglement measurement using an unbalanced Mach-Zehnder interferometer. Opt. Lett., 40, 1121-1124(2015).

    [131] L. Mescia, F. Prudenzano. Advances on optical fiber sensors. Fibers, 2, 1-23(2014).

    [132] Y. Xu, P. Lu, L. Chen, X. Bao. Recent developments in micro-structured fiber optic sensors. Fibers, 5, 3(2017).

    [133] A. Luis, I. Morales, Á. Rivas. Nonlinear fiber gyroscope for quantum metrology. Phys. Rev. A, 94, 013830(2016).

    [134] Z. Zhai, J. Gao. Low-frequency phase measurement with high-frequency squeezing. Opt. Express, 20, 18173-18179(2012).

    [135] L. Zhang, K. Zheng, F. Liu, W. Zhao, L. Tang, H. Yonezawa, L. Zhang, Y. Zhang, M. Xiao. Quantum-limited fiber-optic phase tracking beyond π range. Opt. Express, 27, 2327-2334(2019).

    [136] F. Mondain, T. Lunghi, A. Zavatta, É. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, V. D’Auria. Chip-based squeezing at a telecom wavelength(2018).

    [137] F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, S. Tanzilli. A fully guided-wave squeezing experiment for fiber quantum networks. Optica, 3, 362-365(2016).

    [138] H. Vahlbruch, D. Wilken, M. Mehmet, B. Willke. Laser power stabilization beyond the shot noise limit using squeezed light. Phys. Rev. Lett., 121, 173601(2018).

    [139] S. W. Lloyd, S. H. Fan, M. J. F. Digonnet. Experimental observation of low noise and low drift in a laser-driven fiber optic gyroscope. J. Lightwave Technol., 31, 2079-2085(2013).

    [140] Y. Cai, J. Roslund, G. Ferrini, F. Arzani, X. Xu, C. Fabre, N. Treps. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun., 8, 15645(2017).

    [141] N. P. Mauranyapin, L. S. Madsen, M. A. Taylor, M. Waleed, W. P. Bowen. Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photonics, 11, 477-481(2017).

    CLP Journals

    [1] Guo-Qing Qin, Min Wang, Jing-Wei Wen, Dong Ruan, Gui-Lu Long. Brillouin cavity optomechanics sensing with enhanced dynamical backaction[J]. Photonics Research, 2019, 7(12): 1440

    [2] Xian-Min Jin, M. S. Kim, Brian J. Smith. Quantum photonics: feature introduction[J]. Photonics Research, 2019, 7(12): QP1

    Chuan Xu, Lidan Zhang, Songtao Huang, Taxue Ma, Fang Liu, Hidehiro Yonezawa, Yong Zhang, Min Xiao. Sensing and tracking enhanced by quantum squeezing[J]. Photonics Research, 2019, 7(6): A14
    Download Citation