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Quantum sensing, along with quantum communications and quantum computing, is commonly considered as the
most important application of quantum optics. Among the quantum-sensing experiments, schemes based on squeezed
states of light are popular choices due to their natural quadrature components. Since the first experimental demon-
stration of quantum-squeezing-enhanced phase measurement beyond the shot-noise limit in 1987, quantum-squeez-
ing techniques toward practical sensing and tracking have been extensively investigated. In this paper, we briefly
review the recent developments of quantum squeezing and its applications in several advanced systems for measure-
ments of position, rotation, dynamic motion, magnetic fields, and gravitational waves. We also introduce the recent
experimental efforts to combine the quantum-squeezing lights into fiber sensing systems. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000A14

1. INTRODUCTION

Over the past 30 years, squeezed states of light have been ex-
ploited as an important quantum resource in different fields,
such as continuous-variable quantum teleportation [1,2] and
quantum computing [3], quantum error correction coding [4,5],
quantum state engineering [6–8], quantum imaging [9,10],
and precision measurement and sensing [11–17]. Because the
noise of certain quadrature components of squeezed light is
lower than that of coherent light, squeezed light is capable of
surpassing the shot-noise limit (SNL) for the high precision mea-
surement of a physical parameter. Obviously, squeezed light
sources are necessary to optimize and upgrade the performance
of an optical sensing system. The main methods used to generate
squeezed states are the second and third nonlinear processes,
e.g., parametric downconversion (PDC) [18] and four-wave
mixing (FWM) [19]. Squeezed states of light have been obtained
with different experimental systems, such as atomic ensembles
[20–22], fibers [23–25], mechanical resonators [26,27], micro-
cavities [28–30], and optical parametric oscillator (OPO) cavities
[31–33]. In this review, we focus on the single-mode squeezed
light generated in a cavity, as it is a mature method to achieve
high-quality squeezed states of light. To date, the highest squeez-
ing factor of 15 dB has been obtained by employing a
sub-threshold OPO cavity [33].

Single-mode squeezed light has proven very useful in many
practical systems of precision measurement, such as phase
estimation [16] and tracking [12], optical magnetometers [11],
biological measurement [13], small displacement measurement
[34], and gravitational wave (GW) detection [14,35], with the
purpose being to improve the signal-to-noise ratio (SNR). For
instance, with squeezing, the error of a tracked phase was well
below the coherent-state limit [12]. Squeezing was applied in a
magnetometer with the sensitivity enhanced by 3.2 dB [11]
and biological measurements for which quantum noise was sur-
passed by 42% [13]. Moreover, quantum-squeezing-enhanced
fiber Sagnac [36] and Mach–Zehnder interferometers (MZIs)
[37] were demonstrated in 2010 and 2017, respectively. Goda
et al. improved the displacement sensitivity of a prototype GW
detector by 44% with a squeezed vacuum [38]. Subsequently,
the GEO 600 was the first GW detector employing squeezing
leading to a broadband noise reduction of up to 3.5 dB [35].
Thereafter, noise of the LIGO interferometer was beyond the
SNL of 2.15 dB with squeezed-light injection, and the fre-
quency range was extended down to 150 Hz [14].

It should be noted that other quantum light sources can also
be utilized in quantum sensing. For example, quantum corre-
lation [39–41] and quantum entanglement created by multi-
mode squeezed states [42–54] have potential applications in
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quantum computing [3], quantum networks [53], and
squeezing-enhanced imaging [55]. The phase sensitivity of the
interferometer can be theoretically improved to the Heisenberg
limit of 1∕N [56–62] by using the NOON state [60] or
SU(1,1) interferometry [56,62]; here N is the average photon
number for detection. One can see the references for details.

In this paper, we review the recent progress and applications
of single-mode squeezed states of light for optical sensing and
tracking. In Section 2, we present the basic principle and the pri-
marymeasurement schemes such as the interferometer, homodyne
detection, and heterodyne detection with squeezed-light injection.
The applications of these schemes such as phase tracking, position
and rotation measurement, magnetic field measurement, GW de-
tection, and fiber sensing are introduced in Section 3. The future
prospects for squeezing are presented in Section 4.

2. BASIC PRINCIPLE AND PRIMARY
MEASUREMENT SCHEMES WITH SQUEEZING

A. Basic Principle of Squeezed Light
A nearly monochromatic electromagnetic field can be regarded
as a function of a pair of non-commuting quadrature compo-
nents in phase space, which are normally called amplitude
quadrature X̂ and conjugate phase quadrature Ŷ . According
to Heisenberg’s uncertainty principle, non-commuting observ-
ables cannot be precisely measured simultaneously, and their
uncertainty relation is

Δ2X̂Δ2Ŷ ≥ 1: (1)

For a coherent state, the fluctuations of different quadrature
components are identical in phase space and equal to zero-point
fluctuations (also called shot noise), i.e., Δ2X̂ � Δ2Ŷ � 1.
Figure 1(a) shows a representation of a coherent state using
the phasor diagram. When measuring weak signals such as
GWs with a coherent state, the experimental data generally
exhibit these fluctuations. To improve the sensitivity of the
measurement while obeying Heisenberg’s uncertainty princi-
ple, squeezed light is introduced in which the fluctuations
of one quadrature component are squeezed at the expense of
an expansion for the other. In this case, the fluctuations are
given by Δ2X̂ � e−2r < 1 and Δ2Ŷ � e2r > 1, where r is

called the squeezing factor [63]. During a measurement pro-
cess, one can use the squeezed quadrature component to
enhance the precision. In Fig. 1, we present several typical
coherent states and squeezed states.

To obtain squeezed light, the main methods employ phase-
dependent nonlinear processes, such as FWM and PDC. In
1985, Slusher et al. first observed squeezing using FWM [19];
then Wu et al. obtained 3-dB squeezed light via a PDC process
[18]. Thereafter, researchers have generated squeezed states using
versatile methods with significant technical improvements
[33,64–67]. Because the performance of a quantum-sensing sys-
tem strongly depends on the squeezed light, researchers have
made great efforts in the improvement of the squeezing factor.
To date, the greatest squeezing is 15 dB below the SNL, which is
obtained through an optical parametric amplification (OPA)
process in a periodically poled KTiOPO4 (PPKTP) crystal [33].

OPA happens in a nonlinear crystal with a second-order sus-
ceptibility χ�2�. A pump field and a signal field are injected into
the crystal. In the OPA process, the pump field is converted to
the signal and idler fields. Because of energy conservation, the
sum of the frequencies of the signal and idler fields equals the
frequency of the pump field. Similarly, the momentum conser-
vation requires phase matching of the interacting wavevectors.
In addition, the temperature of the nonlinear crystal must be
carefully controlled for proper phase matching.

Taking the vacuum state as an example, the manner in
which the nonlinear process generates squeezed light is depicted
in Fig. 2 [68]. Consider a short segment of a χ�2� nonlinear
crystal interacting with a vacuum state E in

vac,f and coherent state
E in
2f , where E denotes the amplitude of the electric field, and f

and 2f denote the optical frequencies of the vacuum state and
the coherent state, respectively. The red and orange regions in
Fig. 2 represent the fluctuations of the vacuum state before and
after the OPA process, which describes the squeezing effect.
The dielectric polarization P�E� inside the crystal generates

Fig. 1. Representation of different states in the phasor diagram:
(a) coherent state, (b) vacuum state, (c) vacuum-squeezed state,
(d) phase-squeezed state, and (e) amplitude-squeezed state.

Fig. 2. Schematic of degenerate OPA and graph of dielectric polari-
zation P�E� � ε0�χ�1�E � χ�2�E2� representing the second-order non-
linear process in the crystal. Adapted with permission from Ref. [68].
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a vacuum-squeezed state via OPA. Because of phase mismatch,
the unwanted components such as Eout

4f are greatly suppressed,
which ensures the purity of the squeezed light. The graph of
P�E� illustrates the phase dependence of the noise of the
vacuum field on the pump field.

The standard method to detect squeezing is balanced homo-
dyne detection (BHD). A strong local oscillator (LO) and a
squeezed light with the same optical frequency interfere on a
50/50 beam splitter (BS) and then are coupled to a pair of
balanced detectors [Fig. 3(a)]. After isolating the low-frequency
signal and reserving the first-order terms, the fluctuation of the
BHD output is given by

Δi− ≅ α�δX̂ cos θ� δŶ sin θ�, (2)

where α is the amplitude of the LO, δX̂ and δŶ are the fluc-
tuations in the amplitude and phase quadrature components,
respectively, and θ is the relative phase between the LO and
the squeezed light. The output contains the fluctuations of the
squeezed light multiplying by the amplitude of the LO. By
modifying the relative phase θ, one is able to measure the fluc-
tuations of any quadrature component δX̂ θ � δX̂ sin θ�
δŶ cos θ and then reconstruct the state [69].

B. Primary Measurement Schemes with Squeezing
Most optical precision measurements are based on interferom-
etry, homodyne detection, and heterodyne detection. The op-
tical phase difference of the two arms provides a measure of the
signal sought. However, vacuum noise introduced through the
unused port limits the measurement precision [70]. Replacing
vacuum noise by injecting squeezed light into the unused port
can significantly suppress the noise and improve the SNR.
Many experiments have demonstrated squeezing-enhanced
precision measurement. In this section, we briefly review two
typical configurations, i.e., the squeezing-enhanced MZI [71]
and the polarization interferometer [72].

An MZI [Fig. 3(b)] takes in an incident monochromatic
coherent light beam and a vacuum-squeezed beam, mixes them
at BS1(50/50), and splits them into two arms. The two beams
are brought together again to interfere at BS2(50/50) and
finally are detected by two photodetectors. The frequencies
of the two incident light beams are same. The relative phase
ϕ of the two arms is kept equal to π∕2 for the optimal
SNR. Without injection of a squeezed light, the minimal meas-
urable phase difference is

Δϕmin �
1ffiffiffiffiffi
N

p , (3)

whereN is the average photon number of the coherent beam of
light. If a vacuum-squeezed component is used in detection, the
sensitivity Δϕ improves by a factor e−r for a lossless process.
In practice, the enhancement is degraded by the system loss.
The above analysis is also valid for other types of interferom-
eters, such as the Sagnac interferometer and the Michelson
interferometer [73].

The first squeezing-enhanced experiment based onMZI was
performed by Xiao et al. [71]. The squeezed vacuum was pro-
duced from an OPO cavity and injected through the unused
port of the MZI. A phase dither was placed in one arm.

Fig. 3. (a) Schematic of balanced homodyne detection. PD, photo-
detector. (b) Setup of an MZI. M, mirror. Coherent light illuminates
port a of the MZI, while a vacuum state (or squeezed state) is injected
via port b.

Fig. 4. Square-wave phase signal is obtained with (a) vacuum and
(b) squeezed vacuum. Adapted with permission from Ref. [71].

A16 Vol. 7, No. 6 / June 2019 / Photonics Research Review



As shown in Fig. 4, a 3-dB improvement of the SNR was
observed using squeezed light.

A squeezing-enhanced polarization interferometer [Fig. 5(a)]
[72] was proved to be very sensitive in the detection of
polarizations and magnetic fields [11]. A KTP crystal was
placed in a cavity to generate squeezed light, which was sub-
sequently coupled with a coherent light using a polarization
beam splitter (P1) and then passed through a polarization rotator
(PR). A half-wave plate and the second polarization beam
splitter (P2) served as a BS for BHD where the coherent light
acted as an LO.When the rotator was removed and the squeezed
light was blocked, the fluctuation in the BHD output corre-
sponded to an SNL. The polarization rotation signal was
detected by BHD. Traces (a), (b), and (c) in Fig. 5(b) were ob-
tained with squeezed light, the vacuum state, and anti-squeezed
light input at the unused port, respectively. With squeezing
injection, the SNR was improved by 1.8 dB relative to the
vacuum.

Besides, heterodyne detection is capable of measuring the
difference in frequency of two fields to avoid low-frequency
noise. The technique was applied to Doppler anemometry
to obtain the velocity of gas flows and improved the SNR
by 1 dB using amplitude-squeezed light [74].

3. SQUEEZING-ENHANCED APPLICATIONS
IN VARIOUS FIELDS

A. Position and Rotation Measurement
The measurement of the point spot of a laser beam is used in
many areas such as atomic force microscopy [75], ultraweak
absorption measurements [76], and single-molecule tracking
in biology [13,77]. The position of the spot can be defined
as the mean position of all photons in the beam, the measure-
ment precision of which is constrained by quantum fluc-
tuation. The transverse displacement resolution of a TEM00

laser beam is given by [78]

DQNL � w0

2
ffiffiffiffiffiffiffiffiffi
N tot

p , (4)

where w0 is the waist of the beam and N tot is the total photo-
current; QNL is an abbreviation for the quantum noise limit.

Any displacement modulation of the TEM00 mode is trans-
ferred to the amplitude of higher-order modes, whereas if the
modulation is very small, the TEM10 mode mainly contributes
to the displacement signal. Therefore, the displacement mea-
surement is based on extracting the TEM10 mode component
from the displaced TEM00 mode. There are two conventional
ways to detect the displacement, i.e., split detection and
TEM10 homodyne detection. The advances in both schemes
are reviewed below.

One way to measure the displacement of a laser beam based
on split photodetectors uses the two-pixel detector. In 2000,
Fabre et al. proposed that the minimum measurable displace-
ment DQNL in a two-pixel detector by a TEM00 Gaussian beam
is defined by [55]

DQNL �
ffiffiffi
π

8

r
w0ffiffiffiffiffiffiffiffiffi
N tot

p , (5)

which is degraded in comparison to Eq. (4). This reduction
arises from the mismatch between the noise mode of the split
detection (i.e., the “flipped” mode) and the TEM10 mode in-
troduced by displacement. To further enhance the sensitivity in
split detection, one needs to fill the input beam with a squeezed
noise mode, specifically, a squeezed “flipped” mode.

In 2002, Treps et al. used a spatial squeezed state for the
displacement measurement and achieved a sub-QNL sensitivity
[10]. They combined a 3.5-dB squeezed-vacuum TEM00 mode
generated by an OPA cavity and its coherent “flipped” mode.
Introducing a small transverse displacement modulation by two
electro-optic modulators (EOMs) [Fig. 6(a)], they reduced the
noise floor to a level of about 2.4 dB below the QNL. In 2003,
they extended their work to measure two-dimensional sub-
QNL displacements using a three-mode nonclassical state,
which was generated by coupling three orthogonal transverse
modes, two in a squeezed-vacuum state and one in a bright
coherent field [Fig. 6(b)] [34]. In this experiment, they simul-
taneously achieved a 3.05� 0.1 dB horizontal noise reduction
and a 2.0� 0.1 dB vertical noise reduction, with the smallest
displacement detectable improved from 2.3 Å (1 Å = 0.1 nm)
to 1.6 Å.

Another detection scheme, TEM10 homodyne detection, can
achieve QNL for very small displacements [78]. This scheme
uses a homodyne detection setup involving a TEM10 mode
of the LO (Fig. 7). The noise mode of this detection is the

Fig. 5. (a) Polarization interferometer. (b) Polarization rotation sig-
nal and noise. Adapted with permission from Ref. [72].
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TEM10 mode, which perfectly matches the information to be
extracted, thereby accounting for its 100% efficiency detection
in theory.

In this scheme, filling the input beam with a squeezed-
vacuum TEM10 mode enables measurements beyond the
QNL, which outperforms the split detection for equal values
of squeezing. In 2006, Delaubert et al. [79] achieved a 2-dB
enhancement in small displacement measurements using the
TEM10 detection scheme. In 2014, Sun et al. [80] obtained
2.2� 0.2 dB spatial squeezing and reduced the minimum
measurable displacement from 1.17 Å to 0.99 Å.

Measurements of rotation signals are similar to those of dis-
placements and are also constrained by quantum mechanics;
the rotation angle and angular momentum obey Heisenberg’s
uncertainty principle [81,82]. It is conventional to use a beam
carrying orbital angular momentum such as the Laguerre–
Gaussian modes [83] in spatial rotation measurements based
on its vortex wavefront [84–86]. However, such measurement
schemes are restricted to a resolution limit depending on the
photon number and the orbital angular momentum of the beam
[82]. Using nonclassical states such as the squeezed states of
Laguerre–Gaussian modes can help beat such limits and reduce
the noise below the SNL [87]. Liu et al. defined an n-order
orbital angular position (OAP)-squeezed state, which is the com-
bination of a bright LGsin

0,n mode coherent state and a squeezed-
vacuum LGsin

0,−n state [87]. Using a first-order OAP-squeezed
state in metrology, they achieved a 3-dB enhancement in rotation
measurement over the QNL, with the sensitivity being improved
from 24.9 nrad∕

ffiffiffiffiffiffi
Hz

p
to 17.7 nrad∕

ffiffiffiffiffiffi
Hz

p
.

B. Optical Phase Estimation
Optical phase estimation (OPE), targeting quantum-limited
precisions with limited photon numbers, is one of the key tech-
niques in optical communications and precise metrology
[88,89]. Adaptive homodyne measurement of an optical phase
is an efficient and sophisticated method to approach an ideal
canonical phase measurement [90,91]. If the adaptive control
works properly, the sensitivity of the phase estimation is solely
limited by the intrinsic phase uncertainty of the probe beam.
Squeezed states [92,93] provide a further quantum enhance-
ment in the phase estimations by suppressing quantum noise
of the probe beams [94]. From theory, Wiseman et al. have
demonstrated that an adaptive homodyne measurement with
coherent states can estimate a fixed or time-varying optical
phase with quantum-limited precision, and, moreover, it can
be surpassed with the squeezed states [91,94,95]. In this sec-
tion, we review how OPE provides an advance in sensitivity
with the use of squeezed states.

The first experiment of a single-shot adaptive phase mea-
surement was conducted by Armen et al. in 2002 [96].
They performed an adaptive homodyne measurement on weak
coherent states with a fixed phase, and proved that the adaptive
homodyne measurement can beat the heterodyne measurement
in terms of phase estimation variances. Their system ap-
proached the intrinsic quantum uncertainty and paved the
way for squeezing-enhanced phase estimation experiments.

In 2015, Berni et al. demonstrated quantum-enhanced
ab initio OPE with squeezed-vacuum states and a real-time
Bayesian adaptive estimation algorithm [16]. They generated
5.69� 0.07 dB squeezed-vacuum states using a cavity-
enhanced degenerate PDC. The input, a squeezed-vacuum state,
underwent a fixed phase shift [Fig. 8(a)], which was then mea-
sured by homodyne detection. The LO of the homodyne detec-
tion was feedback-controlled based on Bayesian inference. The
quantum Fisher information for a pure 6-dB squeezed-vacuum
state [Fig. 8(b)] was larger than that for a coherent state within a
specific range of phase shift, which indicates that for an optimal
measurement this system has one certain phase operating point.
They performed a pre-estimation using the initial measurement
results to make a rough estimate of the phase with Bayesian

Fig. 6. (a) Scheme of the experiment setup in one-dimensional dis-
placement measurement. Adapted with permission from Ref. [10].
(b) Scheme of the experiment setup in two-dimensional displacement
measurement. The two squeezed modes are generated from two OPA
cavities and mixed in a mode-mixing cavity. SHG, second harmonic
generator; OPA, optical parametric amplifier; EOM, electro-optic
modulator; ESA, electronic spectrum analyzer. Adapted with permis-
sion from Ref. [34].

Fig. 7. TEM10 homodyne detection for beam displacement mea-
surement. BS, 50/50 beam splitter; LO, local oscillator. The dashed
line delineates the small displacement. Adapted with permission from
Ref. [78].

A18 Vol. 7, No. 6 / June 2019 / Photonics Research Review



inference. This information was used to shift the LO to the near-
est optimal phase operating point, and then they measured the
homodyne outcomes with a larger number of samples to obtain
the final estimate. The estimation variances versus the different
input phases and the number of homodyne samples (Fig. 9)
show that adaptive-feedback control with squeezing enhance-
ment outperforms the quantum Cramer–Rao bound (QCRB)
for coherent states and approaches the optimal CRB for squeezed
states.

Like single-shot phase estimations, time-varying phase esti-
mations have also been investigated. In 2010, Wheatley et al.
demonstrated a continuous adaptive phase measurement of a
stochastically varying optical phase of coherent states, which
provided better precision than the standard (non-adaptive)
quantum limit [97]. They used real-time filtering and post-
processed smoothing with an improvement of 2.24� 0.14
in terms of mean square error (MSE) compared with the stan-
dard quantum limit.

In 2012, squeezing-enhanced time-varying OPEs were real-
ized by Yonezawa et al. [12]. They used a phase-squeezed state
to track a time-varying optical phase with a range of approx-
imately�1 radian. The phase-squeezed states were prepared by
an OPO (Fig. 10) and modulated with a stochastically varying
signal. The modulated phase-squeezed beams were detected by
adaptive homodyne detection with an overall efficiency of
85%. A Kalman filter was used to design the phase-locked loop
to track the stochastically varying optical phase. The phase
tracking results (Fig. 11) show that there exists an optimum
squeezing level in terms of MSE of the estimate. This is

because increasing anti-squeezing affects the precision of the
estimate. With the optimal squeezing level, the MSEs [red
crosses in Fig. 11(b)] were below the coherent-state limit [trace
(i)]; quantum-enhanced phase tracking was realized with large
phase changes.

Optical phase tracking with squeezing enhancement has a
variety of applications, one of which is optomechanical motion
sensing. Iwasawa et al. have worked on measuring the motion
of a mirror under an external stochastic force using optical
phase tracking techniques (Fig. 12) [98]. They estimated the
position, momentum, and force of the mirror with optical

Fig. 8. (a) Schematic of squeezing-enhanced phase estimation.
(b) Fisher information versus phase shift for a pure 6-dB squeezed-
vacuum state. Adapted with permission from Ref. [16].

Fig. 9. (a) Dependence of estimation variance on input phase.
(b) Dependence of estimation variance on the number of homodyne
samples. Adapted with permission from Ref. [16].

Fig. 10. Quantum-enhanced homodyne phase tracking system.
Adapted with permission from Ref. [12].
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probe beams in coherent and phase-squeezed states. The esti-
mations with coherent states [Fig. 12(b), green circles in right
panel] were nearly reaching the coherent QCRB [trace (ii)].
The estimations with squeezed states (red diamonds) showed
a clear enhancement and beat the coherent QCRB, although
the estimation precisions did not reach the squeezed-state
QCRB [trace (iv)] because of the impurity of the squeezed
state. These results demonstrate the potential of the squeez-
ing-enhanced phase estimation method for future quantum
metrological applications.

C. Magnetic Field Measurement
Ultrasensitive magnetometers have found versatile applications,
from geomagnetic field detection [99] to GW detection [100],
nuclear-magnetic-resonance signal detection [101] to biomag-
netism [102]. In 1992, Kupriyanov et al. proposed using
squeezed light to detect magnetic fields [103]. Subsequently,
many methods incorporating squeezed light have been reported
to enhance the SNR, including quantum non-demolition detec-
tion, the quantum Kalman algorithm, and spin-squeezed atom
ensembles, with the potential to reduce noise to the Heisenberg
limit [104–108]. This section mainly covers sub-SNL magne-
tometers using polarization-squeezed light.

The nonlinear magneto-optical rotation (NMOR)-based
magnetometer [109] is a common type of atomic optical mag-
netometer. It consists of a polarization interferometer where the
polarization rotator is replaced by a well-prepared atomic en-
semble [Fig. 5(a)], for example, a spin-oriented atom ensemble
(Fig. 13) [108,110,111]. In this system, the polarization of the
probe beam rotates under a weak external magnetic field be-
cause of the interaction between the probe beam and the atoms.
According to Heisenberg’s uncertainty principle, this magne-
tometer is ultimately confined by quantum noise including
atomic projection noise and optical shot noise. A polarization-
squeezed state of light can improve the performance of NMOR
magnetometer.

Generally, the noise var�Sout2 � detected by an NMOR-based
magnetometer is [11,112]

var�Sout2 � � var�S in2 � � G2 N
2
tot

4
var�Fz�, (6)

where Fz denotes the collective atomic spins in the z direction,
S represents the Stokes operators, G is the interaction strength,

Fig. 11. (a) Dependence of MSE on squeezing level.
(b) Dependence of MSE on amplitude squared jαj2. Adapted with
permission from Ref. [12].

Fig. 12. (a) Schematic of the mirror-motion estimation and
(b) dependence of MSE on amplitude squared jαj2. Adapted with per-
mission from Ref. [98].

Fig. 13. Example of a prepared-atom ensemble where the pump
beam orients the spins of the ensemble. The pump beam, probe beam,
and magnetic field are mutually orthogonal. Adapted with permission
from Ref. [108].
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and N tot is the total number of photons. The optical shot noise
and the atomic projection noise are described by var�S in2 � and
var�Fz�, respectively. In regard to the optical noise, the fluc-
tuation of a bright coherent beam is depicted as a sphere of
uncertainty on the surface of the Poincare sphere, whereas,
for the S in2 parameter, squeezed polarized light is represented
by an ellipsoid [113,114] (Fig. 14). In this sense, the optical
noise can be reduced by injecting a polarization-squeezed
beam; therefore, a sub-QNL magnetometer can be built.
The polarization-squeezed probe beam of such a magnetometer
can be produced by mixing a squeezed vacuum with a coherent
beam in a polarization beam splitter [11].

In 2010, Wolfgramm et al. used 3.6-dB polarization-
squeezed light by mixing a vertically polarized vacuum-
squeezed beam and a horizontally polarized LO to probe a hot
unpolarized ensemble of rubidium atoms. They improved the
sensitivity by 3.2 dB beyond the SNL [11]. In 2012, Horrom
et al. enhanced the sensitivity to 1 pT∕

ffiffiffiffiffiffi
Hz

p
in a sub-kilohertz

frequency band using 2-dB low-frequency squeezed light gen-
erated by an atomic squeezer [115]. In 2014, Otterstrom et al.
combined the squeezer and the magnetometry together,
producing an in situ NMOR-based magnetometer [15]. In this
experiment, they generated two-mode relative-intensity
squeezed states via FWM obtaining an enhancement in sensi-
tivity from 33.2 pT∕

ffiffiffiffiffiffi
Hz

p
to 19.3 pT∕

ffiffiffiffiffiffi
Hz

p
. In 2016,

Lucivero et al. achieved 1.5-dB noise suppression in a high
atomic density �n ≈ 1.3 × 1013 cm−3� system [116].

D. Detection of Gravitational Waves
GWs propagating at the speed of light are generated by accel-
erated mass distributions, such as coalescing binary black holes
and neutron stars [117]. Several initial detectors, such as LIGO,
Virgo, GEO 600, and TAMA 300, made joint observations
from 2002 to 2011 and have evolved into a global network
[38]. In 2015, Advanced LIGO first observed a GW from a
binary black-hole merger [118], the event symbolizing a
new era in GW astronomy. In 2017, a GW from a binary
black-hole coalescence was first detected by a three-detector ob-
servation, i.e., Advanced LIGO and Advanced Virgo [119]. In
this section, we review the principle of Advanced LIGO and the
squeezing-enhanced interferometer of LIGO.

Advanced LIGO consists of two similar kilometer-scale
Michelson interferometers, located in Hanford and Livingston,

U.S. [Fig. 15(a)]. When a GW passes through the two interfer-
ometers, the two arms of each interferometer are strained weakly,
leading to a change in length [73]. This small change in length is
converted to a weak phase signal between the two arms of each
interferometer. The interferometers operate close to a dark fringe,
which is the most sensitive point for GW detection. The light
sources are 1064 nm wavelength Nd:YAG lasers, stabilized in
intensity, frequency, and beam geometry. To detect the weak
GW signal, enlarging the light power and suppressing noise
are necessary. In the interferometer, arm cavities and power recy-
cling cavity are used to increase the light power [120], and a par-
tially transmitting signal-recycling mirror at the output is used to
optimize signal extraction [121,122]. Moreover, the BS and arm
cavities are all suspended as pendula on a seismic isolation plat-
form. The optical path must be in vacuum to prevent phase fluc-
tuations caused by Rayleigh scattering [14]. Figure 15(b) shows
the sensitivity versus frequency of Advanced LIGO.

Although a GW has been detected, higher sensitivity and a
broader frequency range are needed for future GW astronomy.
Injecting nonclassical light is one powerful method for improve-
ments, and squeezed light is the optimal choice [123]. A squeez-
ing of 10 dB amounts to a 10-fold increase in light power,
without introducing thermal deformation of the sensitivity from
a high light power [124]. After proof-of-principle experiments
[38,71,72], squeezed light was demonstrated in the GEO
600 [35] and LIGO [14] with sensitivity improvements.

The LIGO device with squeezing injection (Fig. 16) has a
light source (H1 laser), Nd:YAG laser stabilized in frequency
and intensity, emitting a 15 W light beam to a Michelson inter-
ferometer. The light in the arm cavities is power-enhanced to
about 40 kW by the cavities. The interferometer operates close
to a dark fringe, outputting light of about 30 mW power to the
antisymmetric port. After going through the output Faraday
isolator, a squeezed-vacuum state enters the interferometer
from the antisymmetric port replacing the vacuum state. The
vacuum-squeezed state is produced using PDC in a PPKTP
crystal placed in an OPO cavity. To control the squeezing
angle, a frequency-shifted laser beam is also sent through
the interferometer, together with the squeezed-vacuum state.
Before final detection, an output mode cleaner is used to filter
out the frequency-shifted laser beam, where the squeezed

Fig. 14. Representation of quantum polarization states of bright
coherent and bright amplitude-squeezed light on the Poincare sphere.
Adapted with permission from Ref. [114].

Fig. 15. (a) Simplified layout of Advanced LIGO. (b) Strain noise
of each detector of Advanced LIGO. Adapted with permission from
Ref. [118].
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vacuum passes. For enhancing sensitivity and mitigating noise
from the squeezed source, mode match between the squeezing
and coherent states is needed in addition to critically control-
ling the squeezing angle and reducing the back-scattered light
from the OPO cavity and the total loss in detection [14].

By injecting a ∼10-dB squeezed-vacuum state, the sensitivity
improvement is up to 2.15 dB in the shot-noise-limited frequency
band down to 150Hz (Fig. 17). In addition, frequency-dependent
squeezing [125,126] and two-mode squeezing were proposed
[127] in optimizing GW detection in practice.

E. Fiber-Optic Sensing
Fiber interferometers are widely used in high-sensitivity strain
sensors [128], fiber-optic gyroscopes [129], and quantum state
detections [130], because fiber systems have unparalleled ad-
vantages such as immunity to electromagnetic disturbances,
flexible multiplexing, and long-distance sensing [131,132].
We review next those experiments using fiber interferometer
with squeezed-light injection.

As stated in the previous section, when N classical probes
are used, the sensitivity of the optical measurement device is
fundamentally limited by the shot noise. This precision can
be surpassed using squeezed states. In a fiber system, the most
challenging part for squeezing applications is the optical loss
introduced by the fiber interferometer from decoherence effects
and degradation of the squeezing factor [36]. Moreover,
although squeezed states at high frequencies (MHz) are easy
to achieve, they are not compatible with fiber sensing because
the parameters to be measured for fiber position and strain
sensing systems typically vary in the kilohertz frequency band
[37]. To make full use of the squeezed state in fiber interfer-
ometers, many techniques have been developed, and a series of
experiments has demonstrated the feasibility of quantum-
enhanced fiber sensing [36,37,133,134].

In 2010, Mehmet et al. [36] first applied squeezed states in
fiber-based Sagnac interferometers and realized sensitivities be-
yond SNL. A 10 m long fiber Sagnac interferometer was con-
structed and operated with a continuous-wave laser operating at
1550 nm wavelength, for which low-loss fibers are available. To
compensate for the strong divergence and to minimize coupling
loss, aspheric lenses and antireflecting coatings were used, and
the modes of the two beams were carefully matched. The
single-path transmission was 98% for these fiber-based Sagnac
systems. The squeezed vacuum was injected in the unused port
of the interferometer, and a noise reduction of 4.5 dB was
achieved. When a 6 MHz phase modulation signal was added
(Fig. 18), the results performed by BHD showed that the SNR
with squeezed-light injection [Fig. 18, trace (a)] outperforms
the SNR with vacuum state injection [Fig. 18, trace (b)].

In addition to high-frequency quantum-enhanced measure-
ments in Sagnac interferometers being realized in fiber systems,
a squeezing-enhanced fiber MZI for low-frequency phase mea-
surement has also been demonstrated. In 2017, Liu et al. [37]
reported a fiber MZI for phase measurements in the kilohertz
frequency band beyond the SNL with a high-frequency (MHz
range) squeezed state. The local light imported into one port of
the interferometer was amplitude-modulated (AM) at the mega-
hertz frequency to avoid low-frequency noise. Another input
beam was the squeezed-vacuum field, which was generated by
a NOPA and coupled to a polarization-maintaining fiber for
quantum detection. The interference signal was then measured
by BHD, and a 2-dB phase noise suppression below the SNL
was achieved at a frequency of tens of kilohertz. Figure 19(a)

Fig. 16. Simplified setup of the H1 interferometer with vacuum-
squeezed-state injection. Adapted with permission from Ref. [14].

Fig. 17. Strain sensitivity of H1 detector with and without
squeezed-vacuum injection. Adapted with permission from Ref. [14].

Fig. 18. Sagnac interferometer output signal. Adapted with permis-
sion from Ref. [36].
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shows the phase noise reduction compared with shot noise at
several frequencies; Figs. 19(b)–19(d) present experimental re-
sults obtained at 30 kHz, 80 kHz, and 150 kHz, respectively.
With the injection of an AM coherent field and a squeezed
state, the precision of the low-frequency phase measurement
was enhanced and the noise reduction was independent of
the modulation depth.

Apart from various fiber interferometers for phase measure-
ments, adaptive homodyne systems have also been developed to
estimate the phase signal in fiber systems. Not confined to
measuring single frequency signals, in 2018, Zhang et al.
designed a quantum-limited fiber homodyne system to detect
low-frequency random phase signals beyond the π range [135].
They used a double sideband mode as a signal beam on which a
random phase signal was imposed using a piezoelectric trans-
ducer. The signal was then detected with a homodyne detection
system combined with two feedback loops, one working below
100 Hz to prevent the system from picking up ambient noise
and the other serving as a Kalman filter to realize an optimal
estimation. The optical parts were packed to minimize ambient

noise, and all the optical components were polarization-
maintaining fiber devices for a higher interferometer visibility
in the fiber system. From phase tracking results (Fig. 20), they
demonstrated quantum-limited fiber phase tracking over a
large angular range at a photon flux of ∼106. One can further
improve such a system with a squeezed state of light.

These results in fiber interferometers open a door to real-
world quantum communications and quantum sensing based
on continuous-variable quantum optics [136,137].

4. PROSPECTS

Due to the rapid developments over the past 30 years, quantum
squeezing has become much closer to practical applications
than ever before. Stable squeezed-light sources above 10 dB
are readily achievable in many quantum optic laboratories,
and comparable squeezed-light sources are even commercially
available now. The designs and configurations for different
quantum-sensing systems are diversified according to the spe-
cific parameters to be measured. The techniques of signal
processing and tracking have been greatly optimized to fully
utilize the unique advantages of the available quantum squeez-
ing. It should be noted that squeezed light at the current stage is
still to be developed for further applications. For example, a
robust squeezed source is required for certain applications
under environmental disturbance. In addition, on-chip gener-
ation of high-quality squeezing is necessary for scalable quan-
tum sensing in an integrated platform [26–30]. In this review,
we have focused on several fields that are close to the practical
utilizations of quantum-squeezed states of light. One can surely
expect that many significant and practical applications are yet
to appear. From this point of view, this review just serves as a
starting point for stimulating future research on the sub-shot-
noise measurement using quantum-squeezed states of light.
One should not be surprised to see new applications of
quantum-squeezed states in various frontier fields such as
laser frequency stabilization [138], optic gyroscopes [139],
frequency combs [140], and single-particle detection [141].
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