• Photonics Research
  • Vol. 9, Issue 8, 1616 (2021)
Jiaye Wu1, Ze Tao Xie1, Yanhua Sha1, H. Y. Fu2, and Qian Li1、*
Author Affiliations
  • 1School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
  • 2Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.427246 Cite this Article Set citation alerts
    Jiaye Wu, Ze Tao Xie, Yanhua Sha, H. Y. Fu, Qian Li. Epsilon-near-zero photonics: infinite potentials[J]. Photonics Research, 2021, 9(8): 1616 Copy Citation Text show less
    References

    [1] I. Liberal, N. Engheta. Near-zero refractive index photonics. Nat. Photonics, 11, 149-158(2017).

    [2] N. Kinsey, C. DeVault, A. Boltasseva, V. M. Shalaev. Near-zero-index materials for photonics. Nat. Rev. Mater., 4, 742-760(2019).

    [3] I. Liberal, M. Lobet, Y. Li, N. Engheta. Near-zero-index media as electromagnetic ideal fluids. Proc. Natl. Acad. Sci. USA, 117, 24050-24054(2020).

    [4] X. Niu, X. Hu, S. Chu, Q. Gong. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater., 6, 1701292(2018).

    [5] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264-3294(2013).

    [6] G. Subramania, A. J. Fischer, T. S. Luk. Optical properties of metal-dielectric based epsilon near zero metamaterials. Appl. Phys. Lett., 101, 241107(2012).

    [7] S. Feng, K. Halterman. Parametrically shielding electromagnetic fields by nonlinear metamaterials. Phys. Rev. Lett., 100, 063901(2008).

    [8] D. Felbacq, G. Bouchitté. Homogenization of a set of parallel fibres. Waves Random Media, 7, 245-256(1997).

    [9] B. Edwards, A. Alù, M. E. Young, M. Silveirinha, N. Engheta. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett., 100, 033903(2008).

    [10] A. Alù, N. Engheta. Light squeezing through arbitrarily shaped plasmonic channels and sharp bends. Phys. Rev. B, 78, 035440(2008).

    [11] E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, A. Polman. Experimental verification of n = 0 structures for visible light. Phys. Rev. Lett., 110, 013902(2013).

    [12] L.-G. Wang, Z.-G. Wang, J.-X. Zhang, S.-Y. Zhu. Realization of Dirac point with double cones in optics. Opt. Lett., 34, 1510-1512(2009).

    [13] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics, 7, 791-795(2013).

    [14] S. Kita, Y. Li, P. Camayd-Muñoz, O. Reshef, D. I. Vulis, R. W. Day, E. Mazur, M. Lončar. On-chip all-dielectric fabrication-tolerant zero-index metamaterials. Opt. Express, 25, 8326-8334(2017).

    [15] B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, C. Sirtori. Ultra-strong light-matter coupling for designer Reststrahlen band. New J. Phys., 16, 043029(2014).

    [16] O. Reshef, I. De Leon, M. Z. Alam, R. W. Boyd. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater., 4, 535-551(2019).

    [17] M. G. Silveirinha, N. Engheta. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials. Phys. Rev. B, 76, 245109(2007).

    [18] A. Ciattoni, A. Marini, C. Rizza, M. Scalora, F. Biancalana. Polariton excitation in epsilon-near-zero slabs: transient trapping of slow light. Phys. Rev. A, 87, 053853(2013).

    [19] T. Zhai, X. Zhang. Epsilon-near-zero metamaterials for tailoring ultrashort pulses. Appl. Phys. B, 113, 185-189(2013).

    [20] P. Kelly, L. Kuznetsova. Adaptive pre-shaping for ultrashort pulse control during propagation in AZO/ZnO multilayered metamaterial at the epsilon-near-zero spectral point. OSA Contin., 3, 143-152(2020).

    [21] T. Xu, D. Zhu, Z. H. Hang. Pulse reshaping in double-zero-index photonic crystals with Dirac-like-cone dispersion. Sci. Rep., 10, 8416(2020).

    [22] S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, F. Capolino. Electric field enhancement in ε-near-zero slabs under TM-polarized oblique incidence. Phys. Rev. B, 87, 035120(2013).

    [23] G. H. Y. Li, C. M. de Sterke, A. Tuniz. Omnidirectional field enhancements drive giant nonlinearities in epsilon-near-zero waveguides. Opt. Lett., 45, 6514-6517(2020).

    [24] A. Baev, P. N. Prasad, M. Z. Alam, R. W. Boyd. Dynamically controlling local field enhancement at an epsilon-near-zero/dielectric interface via nonlinearities of an epsilon-near-zero medium. Nanophotonics, 9, 4831-4837(2020).

    [25] I. V. A. K. Reddy, J. M. Jornet, A. Baev, P. N. Prasad. Extreme local field enhancement by hybrid epsilon-near-zero–plasmon mode in thin films of transparent conductive oxides. Opt. Lett., 45, 5744-5747(2020).

    [26] C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù. Boosting optical nonlinearities in ε-near-zero plasmonic channels. Phys. Rev. B, 85, 045129(2012).

    [27] M. Z. Alam, I. De Leon, R. W. Boyd. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [28] A. Ciattoni, C. Rizza, A. Marini, A. D. Falco, D. Faccio, M. Scalora. Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media. Laser Photon. Rev., 10, 517-525(2016).

    [29] C. Rizza, A. Ciattoni, E. Palange. Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero. Phys. Rev. A, 83, 053805(2011).

    [30] C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, A. Alù. Temporal soliton excitation in an ε-near-zero plasmonic metamaterial. Opt. Lett., 39, 5566-5569(2014).

    [31] J. Wu, Q. Li. Propagation of ultrashort pulses in indium tin oxide epsilon-near-zero subwavelength metamaterial at 2  µm. Frontiers in Optics + Laser Science APS/DLS, JTu3A.28(2019).

    [32] J. Wu, Q. Li. Ultrashort pulses in indium tin oxide thin film at its epsilon-near-zero wavelength. Asia Communications and Photonics Conference, M4A.300(2019).

    [33] J. Wu, Z. T. Xie, Y. Sha, H. Y. Fu, Q. Li. Large and complex chromatic dispersion profile in epsilon-near-zero aluminum-doped zinc oxide. Frontiers in Optics/Laser Science, JTu1A.34(2020).

    [34] J. Wu, B. A. Malomed, H. Y. Fu, Q. Li. Self-interaction of ultrashort pulses in an epsilon-near-zero nonlinear material at the telecom wavelength. Opt. Express, 27, 37298-37306(2019).

    [35] J. Wu, Z. T. Xie, Y. Sha, H. Y. Fu, Q. Li. Comparative study on epsilon-near-zero transparent conducting oxides: high-order chromatic dispersions and modeling of ultrashort pulse interactions. Phys. Rev. A, 102, 053503(2020).

    [36] P. Kelly, L. Kuznetsova. Pump-probe ultrashort pulse modulation in an AZO/ZnO metamaterial at the epsilon near zero spectral point. OSA Contin., 3, 3225-3236(2020).

    [37] C. Argyropoulos, G. D’Aguanno, A. Alù. Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial. Phys. Rev. B, 89, 235401(2014).

    [38] A. Capretti, Y. Wang, N. Engheta, L. Dal Negro. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photon., 2, 1584-1591(2015).

    [39] C. K. Dass, H. Kwon, S. Vangala, E. M. Smith, J. W. Cleary, J. Guo, A. Alù, J. R. Hendrickson. Gap-plasmon-enhanced second-harmonic generation in epsilon-near-zero nanolayers. ACS Photon., 7, 174-179(2020).

    [40] L. Rodríguez-Suné, M. Scalora, A. S. Johnson, C. Cojocaru, N. Akozbek, Z. J. Coppens, D. Perez-Salinas, S. Wall, J. Trull. Study of second and third harmonic generation from an indium tin oxide nanolayer: Influence of nonlocal effects and hot electrons. APL Photon., 5, 010801(2020).

    [41] N. C. Passler, I. Razdolski, D. S. Katzer, D. F. Storm, J. D. Caldwell, M. Wolf, A. Paarmann. Second harmonic generation from phononic epsilon-near-zero Berreman modes in ultrathin polar crystal films. APL Photon., 6, 1365-1371(2019).

    [42] P. G. Vianna, A. d. S. Almeida, R. M. Gerosa, D. A. Bahamon, C. J. S. de Matos. Second-harmonic generation enhancement in monolayer transition-metal dichalcogenides by an epsilon-near-zero substrate. Nano. Adv., 3, 272-278(2020).

    [43] I. A. Kolmychek, V. B. Novikov, I. V. Malysheva, A. P. Leontiev, K. S. Napolskii, T. V. Murzina. Second-harmonic generation spectroscopy in gold nanorod-based epsilon-near-zero metamaterials. Opt. Lett., 45, 1866-1869(2020).

    [44] T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, S. Campione. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett., 106, 151103(2015).

    [45] A. Capretti, Y. Wang, N. Engheta, L. Dal Negro. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt. Lett., 40, 1500-1503(2015).

    [46] Y. Yang, J. Lu, A. Manjavacas, T. S. Luk, H. Liu, K. Kelley, J.-P. Maria, E. L. Runnerstrom, M. B. Sinclair, S. Ghimire, I. Brener. High-harmonic generation from an epsilon-near-zero material. Nat. Phys., 15, 1022-1026(2019).

    [47] Y. Yang, J. Lu, A. Manjavacas, T. S. Luk, H. Liu, K. Kelley, J.-P. Maria, M. B. Sinclair, E. L. Runnerstrom, S. Ghimire, I. Brener. High-harmonic generation from an epsilon-near-zero material. Proc. SPIE, 11080, 110800D(2019).

    [48] J. Wu, Z. T. Xie, H. Fu, Q. Li. Numerical investigations on the cascaded high harmonic and quasi-supercontinuum generations in epsilon-near-zero aluminum-doped zinc oxide nanolayers. Results Phys., 24, 104086(2021).

    [49] J. Wu, Z. T. Xie, H. Y. Fu, Q. Li. High-order harmonic generations in epsilon-near-zero aluminum-doped zinc oxide nanopyramid array. 12th International Conference on Advanced Infocomm Technology (ICAIT), 5-9(2020).

    [50] Z. T. Xie, J. Wu, H. Y. Fu, Q. Li. Giant enhancement of third- and fifth-harmonic generations in epsilon-near-zero nanolayer. Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications (ACP/IPOC), M4A.15(2020).

    [51] W. Tian, F. Liang, D. Lu, H. Yu, H. Zhang. Highly efficient ultraviolet high-harmonic generation from epsilon-near-zero indium tin oxide films. Photon. Res., 9, 317-323(2021).

    [52] J. B. Khurgin, M. Clerici, V. Bruno, L. Caspani, C. DeVault, J. Kim, A. Shaltout, A. Boltasseva, V. M. Shalaev, M. Ferrera, D. Faccio, N. Kinsey. Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. Optica, 7, 226-231(2020).

    [53] Y. Zhou, M. Z. Alam, M. Karimi, J. Upham, O. Reshef, C. Liu, A. E. Willner, R. W. Boyd. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat. Commun., 11, 2180(2020).

    [54] D. Yoo, F. Vidal-Codina, C. Ciracì, N.-C. Nguyen, D. R. Smith, J. Peraire, S.-H. Oh. Modeling and observation of mid-infrared nonlocality in effective epsilon-near-zero ultranarrow coaxial apertures. Nat. Commun., 10, 4476(2019).

    [55] Y. He, Y. Li, Z. Zhou, H. Li, Y. Hou, S. Liao, P. Chen. Wideband epsilon-near-zero supercoupling control through substrate-integrated impedance surface. Adv. Theor. Simul., 2, 1900059(2019).

    [56] Y. Wang, H. Luong, Z. Zhang, Y. Zhao. Coupling between plasmonic nanohole array and nanorod array: the emerging of a new extraordinary optical transmission mode and epsilon-near-zero property. J. Phys. D, 53, 275202(2020).

    [57] I. V. Bondarev, H. Mousavi, V. M. Shalaev. Transdimensional epsilon-near-zero modes in planar plasmonic nanostructures. Phys. Rev. Res., 2, 013070(2020).

    [58] Y. G. Lee, C.-S. Kee. Defect modes of two-dimensional photonic crystals composed of epsilon-near-zero metamaterials. J. Opt., 22, 045102(2020).

    [59] O. Dominguez, L. Nordin, J. Lu, K. Feng, D. Wasserman, A. J. Hoffman. Monochromatic multimode antennas on epsilon-near-zero materials. Adv. Opt. Mater., 7, 1800826(2019).

    [60] W. Zhu, W. She. Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab. Opt. Lett., 40, 2961-2964(2015).

    [61] A. Ciattoni, A. Marini, C. Rizza. Efficient vortex generation in subwavelength epsilon-near-zero slabs. Phys. Rev. Lett., 118, 104301(2017).

    [62] R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, V. A. Podolskiy. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett., 102, 127405(2009).

    [63] C. Rizza, A. Di Falco, M. Scalora, A. Ciattoni. One-dimensional chirality: strong optical activity in epsilon-near-zero metamaterials. Phys. Rev. Lett., 115, 057401(2015).

    [64] M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, G. A. Keeler. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5, 233-236(2018).

    [65] Z. T. Xie, J. Wu, H. Y. Fu, Q. Li. Tunable electro- and all-optical switch based on epsilon-near-zero metasurface. IEEE Photon. J., 12, 4501510(2020).

    [66] A. P. Vasudev, J.-H. Kang, J. Park, X. Liu, M. L. Brongersma. Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt. Express, 21, 26387-26397(2013).

    [67] H. Wang, X. Dai, K. Du, K. Gao, W. Zhang, S. J. Chua, T. Mei. Tuning epsilon-near-zero wavelength of indium tin oxide film via annealing. J. Phys. D, 53, 225108(2020).

    [68] B. Johns, N. M. Puthoor, H. Gopalakrishnan, A. Mishra, R. Pant, J. Mitra. Epsilon-near-zero response in indium tin oxide thin films: octave span tuning and IR plasmonics. J. Appl. Phys., 127, 043102(2020).

    [69] R. Hong, T. Yan, C. Tao, Q. Wang, H. Lin, D. Zhang. Laser induced the tunable permittivity of epsilon-near-zero induced in indium tin oxide thin films. Opt. Mater., 107, 110137(2020).

    [70] J. Wu, H. Fu, Y. Zheng, K.-C. Chang, S. Zhang, H. Y. Fu, Q. Li. Precise tuning of epsilon-near-zero properties in indium tin oxide nanolayer by supercritical carbon dioxide. 14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR), C4G_3(2020).

    [71] I. Liberal, N. Engheta. Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies. Proc. Natl. Acad. Sci. USA, 115, 2878-2883(2018).

    [72] C. Zhang, Y. Zu, W. Yang, S. Jiang, J. Liu. Epsilon-near-zero medium for optical switches in Ho solid-state laser at 2.06 µm. Opt. Laser Technol., 129, 106271(2020).

    [73] L. Vertchenko, N. Akopian, A. V. Lavrinenko. Epsilon-near-zero grids for on-chip quantum networks. Sci. Rep., 9, 6053(2019).

    [74] Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, H. Hosono. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater., 29, 1700754(2017).

    [75] Z. T. Xie, J. Wu, H. Y. Fu, Q. Li. Tunable electro-optical metasurface based on an ultra-strong coupling epsilon-near-zero system. Frontiers in Optics/Laser Science, JTu1A.41(2020).

    [76] F. Hu, W. Jia, Y. Meng, M. Gong, Y. Yang. High-contrast optical switching using an epsilon-near-zero material coupled to a Bragg microcavity. Opt. Express, 27, 26405-26414(2019).

    [77] Z. Zhang, J. Liu, Q. Hao, J. Liu. Sensitive saturable absorber and optical switch of epsilon-near-zero medium. Appl. Phys. Express, 12, 065504(2019).

    [78] E. Li, A. X. Wang. Femto-Joule all-optical switching using epsilon-near-zero high-mobility conductive oxide. IEEE J. Sel. Top. Quantum Electron., 27, 3600109(2021).

    [79] J. Kuttruff, D. Garoli, J. Allerbeck, R. Krahne, A. De Luca, D. Brida, V. Caligiuri, N. Maccaferri. Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities. Commun. Phys., 3, 114(2020).

    [80] Y. Kuang, Y. Liu, L. Tian, W. Han, Z. Li. A dual-slot electro-optic modulator based on an epsilon-near-zero oxide. IEEE Photon. J., 11, 2200912(2019).

    [81] B. Zhou, E. Li, Y. Bo, A. X. Wang. High-speed plasmonic-conductive oxide-silicon modulator by epsilon-near-zero electro-absorption. IEEE 16th International Conference on Group IV Photonics (GFP), 1-2(2019).

    [82] Q. Gao, E. Li, A. X. Wang. Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide. Photon. Res., 6, 277-281(2018).

    [83] Y. Sha, J. Wu, Z. T. Xie, Q. Li. Optimization of slot waveguide modulator based on epsilon-near-zero effect. Frontiers in Optics/Laser Science, JTu1B.9(2020).

    [84] X. Liu, K. Zang, J.-H. Kang, J. Park, J. S. Harris, P. G. Kik, M. L. Brongersma. Epsilon-near-zero Si slot-waveguide modulator. ACS Photon., 5, 4484-4490(2018).

    [85] L. Tao, A. Anopchenko, S. Gurung, J. Zhang, H. W. H. Lee. Gate-tunable plasmon-induced transparency modulator based on stub-resonator waveguide with epsilon-near-zero materials. Sci. Rep., 9, 2789(2019).

    [86] E. Alvear-Cabezón, T. Taliercio, S. Blin, R. Smaali, F. Gonzalez-Posada, A. Baranov, R. Teissier, E. Centeno. Epsilon near-zero all-optical terahertz modulator. Appl. Phys. Lett., 117, 111101(2020).

    [87] M. A. Swillam, A. O. Zaki, K. Kirah, L. A. Shahada. On chip optical modulator using epsilon-near-zero hybrid plasmonic platform. Sci. Rep., 9, 6669(2019).

    [88] B. Zhou, E. Li, Y. Bo, A. X. Wang. High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide. J. Lightwave Technol., 38, 3338-3345(2020).

    [89] B. Zhou, E. Li, Y. Bo, W.-C. Hsu, A. X. Wang. High-speed broadband plasmonic-silicon modulator integrated with epsilon-near-zero conductive oxide. Conference on Lasers and Electro-Optics, STh3O.5(2020).

    [90] J. Park, J.-H. Kang, X. Liu, M. L. Brongersma. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci. Rep., 5, 15754(2015).

    [91] E. Nahvi, I. Liberal, N. Engheta. Nonlinear metamaterial absorbers enabled by photonic doping of epsilon-near-zero metastructures. Phys. Rev. B, 102, 035404(2020).

    [92] Z. Meng, H. Cao, X. Wu. New design strategy for broadband perfect absorber by coupling effects between metamaterial and epsilon-near-zero mode. Opt. Mater., 96, 109347(2019).

    [93] E. M. Smith, J. Chen, J. R. Hendrickson, J. W. Cleary, C. Dass, A. N. Reed, S. Vangala, J. Guo. Epsilon-near-zero thin-film metamaterials for wideband near-perfect light absorption. Opt. Mater. Express, 10, 2439-2446(2020).

    [94] W. Ji, D. Wang, S. Li, Y. Shang, W. Xiong, L. Zhang, J. Luo. Photonic-doped epsilon-near-zero media for coherent perfect absorption. Appl. Phys. A, 125, 129(2019).

    [95] X. Chai, Y. Zhang, Y. Cao, L. Wu, J. Ma, Y. Liu, L. Song. Modulation of photoelectric properties of indium tin oxide thin films via oxygen control, and its application to epsilon-near-zero properties for an infrared absorber. J. Appl. Phys., 128, 185301(2020).

    [96] Q.-H. Xiao, X.-Y. Feng, W. Yang, Y.-K. Lin, Q.-Q. Peng, S.-Z. Jiang, J. Liu, L.-B. Su. Epsilon-near-zero indium tin oxide nanocolumns array as a saturable absorber for a Nd:BGO laser. Laser Phys., 30, 055802(2020).

    [97] W.-B. Liao, C.-C. Lee, Y.-C. Chang, W.-H. Cho, H.-P. Chen, C.-C. Kuo. Admittance analysis of broadband omnidirectional near-perfect absorber in epsilon-near-zero mode. Appl. Opt., 59, 10138-10142(2020).

    [98] A. R. Davoyan, A. M. Mahmoud, N. Engheta. Optical isolation with epsilon-near-zero metamaterials. Opt. Express, 21, 3279-3286(2013).

    [99] J. Parra, I. Olivares, A. Brimont, P. Sanchis. Non-volatile epsilon-near-zero readout memory. Opt. Lett., 44, 3932-3935(2019).

    [100] M. Kim, S. Kim, S. Kim. Resonator-free optical bistability based on epsilon-near-zero mode. Sci. Rep., 9, 6552(2019).

    [101] Y. Wu, X. Hu, F. Wang, J. Yang, C. Lu, Y.-C. Liu, H. Yang, Q. Gong. Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range. Phys. Rev. Appl., 12, 054021(2019).

    [102] X. Duan, F. Zhang, Z. Qian, H. Hao, L. Shan, Q. Gong, Y. Gu. Accumulation and directionality of large spontaneous emission enabled by epsilon-near-zero film. Opt. Express, 27, 7426-7434(2019).

    [103] J.-K. So, G. H. Yuan, C. Soci, N. I. Zheludev. Enhancement of luminescence of quantum emitters in epsilon-near-zero waveguides. Appl. Phys. Lett., 117, 181104(2020).

    [104] K. Minn, A. Anopchenko, C.-W. Chang, J. Kim, Y.-J. Lu, S. Gwo, H. W. H. Lee. Enhanced spontaneous emission of 2D materials on epsilon-near-zero substrates. Proc. SPIE, 11462, 114620O(2020).

    [105] Z. Zhou, Y. Li, E. Nahvi, H. Li, Y. He, I. Liberal, N. Engheta. General impedance matching via doped epsilon-near-zero media. Phys. Rev. Appl., 13, 034005(2020).

    [106] Y. Lin, X. Liu, H. Chen, X. Guo, J. Pan, J. Yu, H. Zheng, H. Guan, H. Lu, Y. Zhong, Y. Chen, Y. Luo, W. Zhu, Z. Chen. Tunable asymmetric spin splitting by black phosphorus sandwiched epsilon-near-zero-metamaterial in the terahertz region. Opt. Express, 27, 15868-15879(2019).

    [107] T. Suzuki, T. Sato, M. Sekiya, J. C. Young. Epsilon-near-zero three-dimensional metamaterial for manipulation of terahertz beams. Appl. Opt., 58, 3029-3035(2019).

    [108] W. Jia, M. Liu, Y. Lu, X. Feng, Q. Wang, X. Zhang, Y. Ni, F. Hu, M. Gong, X. Xu, Y. Huang, W. Zhang, Y. Yang, J. Han. Broadband terahertz wave generation from an epsilon-near-zero material. Light Sci. Appl., 10, 11(2021).

    [109] J. Dai, H. Luo, M. Moloney, J. Qiu. Adjustable graphene/polyolefin elastomer epsilon-near-zero metamaterials at radiofrequency range. ACS Appl. Mater. Interfaces, 12, 22019-22028(2020).

    [110] D. M. George, A. Chandroth. 5 GHz high gain slotted SIW epsilon near zero antenna array for wireless communications. Eng. Res. Express, 2, 045014(2020).

    [111] A. Nieminen, A. Marini, M. Ornigotti. Goos–Hänchen and Imbert–Fedorov shifts for epsilon-near-zero materials. J. Opt., 22, 035601(2020).

    [112] R. K. Saripalli, N. Chaitanya, A. Ghosh, V. Sharma, I. De Leon, G. Samanta. Experimental verification of vortex generation through spin-orbit coupling in epsilon-near-zero films. Conference on Lasers and Electro-Optics, FM2B.8(2020).

    [113] A. Ghosh, R. Saripalli, K. Subith, N. A. Chaitanya, V. Sharma, I. D. Leon, G. Samanta. Generation of non-collinear Poincaré beam through the spin-orbit interaction in epsilon-near-zero film. Frontiers in Optics/Laser Science, FM7C.3(2020).

    [114] S. Benis, N. Munera, E. W. V. Stryland, D. J. Hagan. Transient nonlinear phase-shift in epsilon-near-zero materials. IEEE Research and Applications of Photonics in Defense Conference (RAPID), 1-2(2020).

    [115] G. E. Lio, A. Ferraro, M. Giocondo, R. Caputo, A. De Luca. Color gamut behavior in epsilon near-zero nanocavities during propagation of gap surface plasmons. Adv. Opt. Mater., 8, 2000487(2020).

    [116] K. Manukyan, M. Z. Alam, C. Liu, K. Pang, Y. Zhou, Z. Zhao, H. Song, M. Tur, R. W. Boyd, A. E. Willner. Generation of pulses with dynamic polarization evolution using time-varying epsilon-near-zero metasurface. IEEE Photonics Conference (IPC), 1-2(2020).

    [117] G. E. Lio, A. Ferraro, T. Ritacco, D. M. Aceti, A. De Luca, M. Giocondo, R. Caputo. Leveraging on ENZ metamaterials to achieve 2D and 3D hyper-resolution in two-photon direct laser writing. Adv. Mater., 33, 2008644(2021).

    [118] Q. Jin, G. Liang, G. Chen, F. Zhao, S. Yan, K. Zhang, M. Yang, Q. Zhang, Z. Wen, Z. Zhang. Enlarging focal depth using epsilon-near-zero metamaterial for plasmonic lithography. Opt. Lett., 45, 3159-3162(2020).

    [119] H. Luo, J. Qin, E. Kinzel, L. Wang. Deep plasmonic direct writing lithography with ENZ metamaterials and nanoantenna. Nanotechnology, 30, 425303(2019).

    [120] G. D’Aguanno, N. Mattiucci, M. Scalora, M. J. Bloemer. Bright and dark gap solitons in a negative index Fabry-Pérot etalon. Phys. Rev. Lett., 93, 213902(2004).

    [121] N. Mattiucci, G. D’Aguanno, M. J. Bloemer, M. Scalora. Second-harmonic generation from a positive-negative index material heterostructure. Phys. Rev. E, 72, 066612(2005).

    [122] G. D’Aguanno, N. Mattiucci, M. J. Bloemer, M. Scalora. Large enhancement of interface second-harmonic generation near the zero-n¯ gap of a negative-index Bragg grating. Phys. Rev. E, 73, 036603(2006).

    [123] G. D’Aguanno, N. Mattiucci, M. Scalora, M. J. Bloemer. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure. Phys. Rev. E, 74, 026608(2006).

    [124] M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, F. Capolino. Giant field enhancement in longitudinal epsilon-near-zero films. Phys. Rev. B, 95, 161105(2017).

    [125] M. Silveirinha, N. Engheta. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett., 97, 157403(2006).

    [126] V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, R. Krahne. A semi-classical view on epsilon-near-zero resonant tunneling modes in metal/insulator/metal nanocavities. Nano Lett., 19, 3151-3160(2019).

    [127] S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, P. Vincent. A metamaterial for directive emission. Phys. Rev. Lett., 89, 213902(2002).

    [128] S. S. M. Khaleghi, G. Moradi, R. S. Shirazi, A. Jafargholi. Microstrip line impedance matching using ENZ metamaterials, design, and application. IEEE Trans. Antennas Propag., 67, 2243-2251(2019).

    [129] G. D’Aguanno, N. Mattiucci, M. J. Bloemer, R. Trimm, N. Aközbek, A. Alù. Frozen light in a near-zero index metasurface. Phys. Rev. B, 90, 054202(2014).

    [130] J. B. Khurgin, M. Clerici, N. Kinsey. Fast and slow nonlinearities in ENZ materials(2020).

    [131] G. D’Aguanno, N. Mattiucci, M. J. Bloemer. Ultraslow light pulses in a nonlinear metamaterial. J. Opt. Soc. Am. B, 25, 1236-1241(2008).

    [132] A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B, 75, 155410(2007).

    [133] S. Vassant, J.-P. Hugonin, F. Marquier, J.-J. Greffet. Berreman mode and epsilon near zero mode. Opt. Express, 20, 23971-23977(2012).

    [134] S. Campione, I. Brener, F. Marquier. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B, 91, 121408(2015).

    [135] S. Vassant, J.-P. Hugonin, J.-J. Greffet. Quasi-confined ENZ mode in an anisotropic uniaxial thin slab. Opt. Express, 27, 12317-12335(2019).

    [136] W. Tian, F. Liang, S. Chi, C. Li, H. Yu, H. Zhang, H. Zhang. Highly efficient super-continuum generation on an epsilon-near-zero surface. ACS Omega, 5, 2458-2464(2020).

    [137] G. P. Agrawal. Nonlinear Fiber Optics(2013).

    [138] N. Kinsey, J. Khurgin. Nonlinear epsilon-near-zero materials explained: opinion. Opt. Mater. Express, 9, 2793-2796(2019).

    [139] E. Nahvi, I. Liberal, N. Engheta. Nonperturbative effective magnetic nonlinearity in ENZ media doped with Kerr dielectric inclusions. ACS Photon., 6, 2823-2831(2019).

    [140] M. A. Vincenti, D. de Ceglia, M. Scalora. ENZ materials and anisotropy: enhancing nonlinear optical interactions at the nanoscale. Opt. Express, 28, 31180-31196(2020).

    [141] J. Deng, Y. Tang, S. Chen, K. Li, A. V. Zayats, G. Li. Giant enhancement of second-order nonlinearity of epsilon-near- zero medium by a plasmonic metasurface. Nano Lett., 20, 5421-5427(2020).

    [142] S. Benis, N. Munera, D. J. Hagan, E. W. Van Stryland. Spectral and angular dependence of the giant nonlinear refraction of indium tin oxide excited at epsilon-near-zero. Conference on Lasers and Electro-Optics, FF3D.3(2019).

    [143] D. M. Solis, N. Engheta. A theoretical explanation for enhanced nonlinear response in epsilon-near-zero media. Conference on Lasers and Electro-Optics, JW2D.15(2020).

    [144] C. Liu, M. Z. Alam, K. Manukyan, K. Pang, Y. Zhou, H. Song, X. Su, J. R. Hendrickson, E. M. Smith, M. Tur, R. W. Boyd, A. E. Willner. Nonlinear response of ENZ plasmon modes near 1550 nm. IEEE Photonics Conference (IPC), 1-2(2020).

    [145] H. Wang, K. Du, R. Liu, X. Dai, W. Zhang, S. J. Chua, T. Mei. Role of hot electron scattering in epsilon-near-zero optical nonlinearity. Nanophotonics, 9, 4287-4293(2020).

    [146] S. Suresh, O. Reshef, M. Z. Alam, J. Upham, M. Karimi, R. W. Boyd. Enhanced nonlinear optical responses of layered epsilon-near-zero metamaterials at visible frequencies. ACS Photon., 8, 125-129(2021).

    [147] S. Suresh, O. Reshef, M. Z. Alam, J. Upham, M. Karimi, R. W. Boyd. Large optical nonlinearity in epsilon-near-zero metamaterials in the visible regime. Frontiers in Optics + Laser Science APS/DLS, JW3A.21(2019).

    [148] X. Niu, X. Hu, Q. Sun, C. Lu, Y. Yang, H. Yang, Q. Gong. Polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-near-zero material. Nanophotonics, 9, 4839-4851(2020).

    [149] A. Ciattoni, C. Rizza, E. Palange. Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity. Opt. Lett., 35, 2130-2132(2010).

    [150] A. Ciattoni, C. Rizza, E. Palange. Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity. Phys. Rev. A, 81, 043839(2010).

    [151] R. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, D. Faccio. Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials. Sci. Rep., 6, 27700(2016).

    [152] P. Drude. Zur Elektronentheorie der Metalle. Ann. Phys. (Leipzig), 306, 566-613(1900).

    [153] S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, A. K. Barua. Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J. Appl. Phys., 54, 3497-3501(1983).

    [154] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films, 445, 263-267(2003).

    [155] S.-M. Park, T. Ikegami, K. Ebihara. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films, 513, 90-94(2006).

    [156] B. T. Diroll, P. Guo, R. P. H. Chang, R. D. Schaller. Large transient optical modulation of epsilon-near-zero colloidal nanocrystals. ACS Nano, 10, 10099-10105(2016).

    [157] Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J.-P. Maria, M. B. Sinclair, I. Brener. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics, 11, 390-395(2017).

    [158] K. M. Yu, D. M. Detert, G. Chen, W. Zhu, C. Liu, S. Grankowska, L. Hsu, O. D. Dubon, W. Walukiewicz. Defects and properties of cadmium oxide based transparent conductors. J. Appl. Phys., 119, 181501(2016).

    [159] E. L. Runnerstrom, K. P. Kelley, E. Sachet, C. T. Shelton, J.-P. Maria. Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films. ACS Photon., 4, 1885-1892(2017).

    [160] C. P. Liu, Y. Foo, M. Kamruzzaman, C. Y. Ho, J. A. Zapien, W. Zhu, Y. J. Li, W. Walukiewicz, K. M. Yu. Effects of free carriers on the optical properties of doped CdO for full-spectrum photovoltaics. Phys. Rev. Appl., 6, 064018(2016).

    [161] S. Jin, Y. Yang, J. E. Medvedeva, J. R. Ireland, A. W. Metz, J. Ni, C. R. Kannewurf, A. J. Freeman, T. J. Marks. Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD. J. Am. Chem. Soc., 126, 13787-13793(2004).

    [162] R. G. Bikbaev, S. Y. Vetrov, I. V. Timofeev. Transparent conductive oxides for the epsilon-near-zero Tamm plasmon polaritons. J. Opt. Soc. Am. B, 36, 2817-2823(2019).

    [163] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, H. A. Atwater. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [164] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [165] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486-2489(1987).

    [166] E. Rephaeli, A. P. Raman, S. Fan. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett., 13, 1457-1461(2013).

    [167] A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, S. Fan. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515, 540-544(2014).

    [168] J.-Y. Wu, Y.-Z. Gong, P.-R. Huang, G.-J. Ma, Q.-F. Dai. Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure. Chin. Phys. B, 26, 104201(2017).

    [169] J. Wu, Y. Chen. Broadband radiative cooling and decoration for passively dissipated portable electronic devices by aperiodic photonic multilayers. Ann. Phys. (Leipzig), 532, 2000001(2020).

    [170] M. Habib, D. Briukhanova, N. Das, B. C. Yildiz, H. Caglayan. Controlling the plasmon resonance via epsilon-near-zero multilayer metamaterials. Nanophotonics, 9, 3637-3644(2020).

    [171] T. G. Folland, G. Lu, A. Bruncz, J. R. Nolen, M. Tadjer, J. D. Caldwell. Vibrational coupling to epsilon-near-zero waveguide modes. ACS Photon., 7, 614-621(2020).

    [172] C. Rizza, A. Di Falco, A. Ciattoni. Gain assisted nanocomposite multilayers with near zero permittivity modulus at visible frequencies. Appl. Phys. Lett., 99, 221107(2011).

    [173] R. Maas, J. Parsons, N. Engheta, A. Polman. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics, 7, 907-912(2013).

    [174] L. Zhao, H. Xie. A novel optical ε-near-zero material realized by multi-layered Ag/SiC film structures. Optik, 183, 513-522(2019).

    [175] K. P. Kelley, E. L. Runnerstrom, E. Sachet, C. T. Shelton, E. D. Grimley, A. Klump, J. M. LeBeau, Z. Sitar, J. Y. Suen, W. J. Padilla, J.-P. Maria. Multiple epsilon-near-zero resonances in multilayered cadmium oxide: designing metamaterial-like optical properties in monolithic materials. ACS Photon., 6, 1139-1145(2019).

    [176] D. Dai, M. Zhang. Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls. Opt. Express, 23, 32452-32464(2015).

    [177] V. Caligiuri, M. Palei, G. Biffi, R. Krahne. Hybridization of epsilon-near-zero modes via resonant tunneling in layered metal-insulator double nanocavities. Nanophotonics, 8, 1505-1512(2019).

    [178] A. R. Rashed, B. C. Yildiz, S. R. Ayyagari, H. Caglayan. Hot electron dynamics in ultrafast multilayer epsilon-near-zero metamaterials. Phys. Rev. B, 101, 165301(2020).

    [179] M. Koivurova, T. Hakala, J. Turunen, A. T. Friberg, M. Ornigotti, H. Caglayan. Metamaterials designed for enhanced ENZ properties. New J. Phys., 22, 093054(2020).

    [180] Y. G. Lee, C.-S. Kee. Constant cutoff frequency of a two-dimensional photonic crystal composed of metallic rods and epsilon-near-zero materials. Physica B, 600, 412598(2021).

    [181] Z. Zhou, Y. Li. Effective epsilon-near-zero (ENZ) antenna based on transverse cutoff mode. IEEE Trans. Antennas Propag., 67, 2289-2297(2019).

    [182] W. Ji, J. Luo, Y. Lai. Extremely anisotropic epsilon-near-zero media in waveguide metamaterials. Opt. Express, 27, 19463-19473(2019).

    [183] S. Benis, N. Munera, E. W. Van Stryland, D. J. Hagan. Enhanced nonlinear phase-shift in epsilon-near-zero materials: the effect of group and phase velocity. 14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR), C8B_4(2020).

    [184] S. A. Benis, N. Munera, E. W. Van Stryland, D. J. Hagan. Large nonlinear phase shift in epsilon-near-zero materials: the effect of group and phase velocity. Proc. SPIE, 11460, 1146010(2020).

    [185] J. O. Kjellman, R. Stabile, K. A. Williams. Broadband giant group velocity dispersion in asymmetric InP dual layer, dual width waveguides. J. Lightwave Technol., 35, 3791-3800(2017).

    [186] J. Wu, Q. Li. Highly efficient self-similar spectral compression of hyperbolic secant pulses enhanced by pre-chirping in nonlinear fibres. J. Opt., 21, 085503(2019).

    [187] J. Wu, Q. Li. Efficient self-similar spectral compression of chirped soliton pulses in nonlinear fibers with exponentially increasing dispersion. Frontiers in Optics + Laser Science APS/DLS, JTu4A.63(2019).

    [188] P. Kelly, L. Kuznetsova. Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial. Appl. Phys. B, 124, 60(2018).

    [189] N. Smith, N. Doran, W. Forysiak, F. Knox. Soliton transmission using periodic dispersion compensation. J. Lightwave Technol., 15, 1808-1822(1997).

    [190] B. E. A. Saleh, M. C. Teich. Fundamentals of Photonics(1991).

    [191] P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, S. A. Tretyakov. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B, 67, 113103(2003).

    [192] F. Capolino. Theory and Phenomena of Metamaterials(2010).

    [193] K.-S. Lee, M. A. El-Sayed. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B, 110, 19220-19225(2006).

    [194] J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, M. Käll. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small, 4, 202-205(2008).

    [195] E. Hutter, J. H. Fendler. Exploitation of localized surface plasmon resonance. Adv. Mater., 16, 1685-1706(2004).

    [196] F. Kusa, S. Ashihara. Spectral response of localized surface plasmon in resonance with mid-infrared light. J. Appl. Phys., 116, 153103(2014).

    [197] J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, J. Siegel. Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses. Appl. Phys. Lett., 104, 153106(2014).

    [198] R. Rosei. Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory. Phys. Rev. B, 10, 474-483(1974).

    [199] N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B, 61, 16956-16966(2000).

    [200] G. Della Valle, M. Conforti, S. Longhi, G. Cerullo, D. Brida. Real-time optical mapping of the dynamics of nonthermal electrons in thin gold films. Phys. Rev. B, 86, 155139(2012).

    [201] N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, A. Boltasseva. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2, 616-622(2015).

    [202] H. Wang, K. Du, C. Jiang, Z. Yang, L. Ren, W. Zhang, S. J. Chua, T. Mei. Extended Drude model for intraband-transition-induced optical nonlinearity. Phys. Rev. Appl., 11, 064062(2019).

    [203] B. C. Yildiz, H. Caglayan. Epsilon-near-zero media coupled with localized surface plasmon modes. Phys. Rev. B, 102, 165303(2020).

    [204] H. F. Arnoldus, Z. Xu. Force on an electric dipole near an ENZ interface. J. Opt. Soc. Am. B, 36, F18-F24(2019).

    [205] I. S. Nefedov, J. M. Rubi. Casimir forces exerted by epsilon-near-zero hyperbolic materials. Sci. Rep., 10, 16831(2020).

    [206] C. S. Castro, E. R. Méndez, A. Vial, G. Lerondel, Y. Battie, A. Bruyant, R. Vincent. Optical density of states near planar ENZ materials. Opt. Lett., 45, 3593-3596(2020).

    [207] Y. Zhou, M. Karimi, J. Upham, O. Reshef, C. Liu, A. E. Willner, M. Z. Alam, R. W. Boyd. Frequency conversion through time refraction using an epsilon-near-zero material. Conference on Lasers and Electro-Optics, FF1B.3(2019).

    [208] C. Liu, M. Z. Alam, K. Pang, K. Manukyan, J. R. Hendrickson, E. M. Smith, Y. Zhou, O. Reshef, H. Song, R. Zhang, H. Song, F. Alishahi, A. Fallahpour, A. Almaiman, R. W. Boyd, M. Tur, A. E. Willner. Experimental demonstration of self-phase-modulation induced wavelength shift in an 80-nm thick ITO-ENZ material in the telecom C band. Conference on Lasers and Electro-Optics, FTu3Q.5(2020).

    [209] K. Pang, M. Z. Alam, Y. Zhou, O. Reshef, C. Liu, K. Manukyan, M. Voegtle, A. Pennathur, C. Tseng, X. Su, H. Song, Z. Zhao, R. Zhang, H. Song, N. Hu, A. Almaiman, J. M. Dawlaty, R. W. Boyd, M. Tur, A. E. Willner. Plasmonic nanoantenna-enhanced adiabatic wavelength conversion using a time-varying epsilon-near-zero-based metasurface. Conference on Lasers and Electro-Optics, FTh4Q.6(2020).

    [210] M. Z. Alam, Y. Zhou, M. Karimi, J. Upham, O. Reshef, C. Liu, A. E. Willner, R. W. Boyd. Epsilon-near-zero material for time refraction. Nonlinear Optics (NLO), NTh3A.4(2019).

    [211] V. Bruno, S. Vezzoli, C. DeVault, E. Carnemolla, M. Ferrera, A. Boltasseva, V. M. Shalaev, D. Faccio, M. Clerici. Broad frequency shift of parametric processes in epsilon-near-zero time-varying media. Appl. Sci., 10, 1318(2020).

    [212] V. Bruno, C. DeVault, S. Vezzoli, Z. Kudyshev, T. Huq, S. Mignuzzi, A. Jacassi, S. Saha, Y. D. Shah, S. A. Maier, D. R. S. Cumming, A. Boltasseva, M. Ferrera, M. Clerici, D. Faccio, R. Sapienza, V. M. Shalaev. Negative refraction in time-varying strongly coupled plasmonic-antenna–epsilon-near-zero systems. Phys. Rev. Lett., 124, 043902(2020).

    [213] M. Bellini, C. Lyngå, A. Tozzi, M. B. Gaarde, T. W. Hänsch, A. L’Huillier, C.-G. Wahlström. Temporal coherence of ultrashort high-order harmonic pulses. Phys. Rev. Lett., 81, 297-300(1998).

    [214] E. Hemsing, M. Dunning, C. Hast, T. O. Raubenheimer, S. Weathersby, D. Xiang. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique. Phys. Rev. Spec. Top. Accel. Beams, 17, 070702(2014).

    [215] M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, R. W. Boyd. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics, 12, 79-83(2018).

    [216] R. Secondo, N. Kinsey. Modelling nonlinear near-zero-index media through carrier kinetic models. Frontiers in Optics + Laser Science APS/DLS, JTu4A.34(2019).

    [217] N. Kinsey, R. Secondo, D. Fomra. Optical nonlinearities in transparent conducting oxides–the role of loss. IEEE Research and Applications of Photonics in Defense Conference (RAPID), 1-4(2019).

    [218] R. Secondo, J. Khurgin, N. Kinsey. Absorptive loss and band non-parabolicity as a physical origin of large nonlinearity in epsilon-near-zero materials. Opt. Mater. Express, 10, 1545-1560(2020).

    [219] D. Rocco, C. De Angelis, D. de Ceglia, L. Carletti, M. Scalora, M. Vincenti. Dielectric nanoantennas on epsilon-near-zero substrates: impact of losses on second order nonlinear processes. Opt. Commun., 456, 124570(2020).

    [220] H. Liu, S. Zhong, Y. Gao, J. Huang, T. Liu, G. Xu. Tailoring absorption spectrum by inserting an epsilon-near-zero film into metal-dielectric-metal assembly. Solid State Commun., 289, 17-21(2019).

    [221] Y. Li, I. Liberal, N. Engheta. Structural dispersion–based reduction of loss in epsilon-near-zero and surface plasmon polariton waves. Sci. Adv., 5, eaav3764(2019).

    [222] H. Ma, Y. Zhao, Y. Shao, Y. Lian, W. Zhang, G. Hu, Y. Leng, J. Shao. Principles to tailor the saturable and reverse saturable absorption of epsilon-near-zero material. Photon. Res., 9, 678-686(2021).

    [223] S. Xian, L. Nie, J. Qin, T. Kang, C. Li, J. Xie, L. Deng, L. Bi. Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films. Opt. Express, 27, 28618-28628(2019).

    [224] S. Gurung, A. Anopchenko, S. Bej, J. Joyner, J. D. Myers, J. Frantz, H. W. H. Lee. Atomic layer engineering of epsilon-near-zero ultrathin films with controllable field enhancement. Adv. Mater. Interfaces, 7, 2000844(2020).

    [225] X. Qiu, J. Shi, Y. Li, F. Zhang. All-dielectric multifunctional transmittance-tunable metasurfaces based on guided-mode resonance and ENZ effect. Nanotechnology, 32, 065202(2021).

    [226] X. Qiu, F. Yang, Y. Li, F. Zhang. All-dielectric tunable metasurface based on guide-mode resonance and ENZ effects. Conference on Lasers and Electro-Optics, JW2D.16(2020).

    [227] H. Zheng, R.-J. Zhang, D.-H. Li, X. Chen, S.-Y. Wang, Y.-X. Zheng, M.-J. Li, Z.-G. Hu, N. Dai, L.-Y. Chen. Optical properties of Al-doped ZnO films in the infrared region and their absorption applications. Nano. Res. Lett., 13, 149(2018).

    [228] M. Herrero, J. A. Mendiola, A. Cifuentes, E. Ibáñez. Supercritical fluid extraction: recent advances and applications. J. Chromatogr. A, 1217, 2495-2511(2010).

    [229] F. Maxim, C. Contescu, P. Boillat, B. Niceno, K. Karalis, A. Testino, C. Ludwig. Visualization of supercritical water pseudo-boiling at Widom line crossover. Nat. Commun., 10, 4114(2019).

    [230] K.-C. Chang, T.-M. Tsai, T.-C. Chang, Y.-E. Syu, C.-C. Wang, S.-L. Chuang, C.-H. Li, D.-S. Gan, S. M. Sze. Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment. Appl. Phys. Lett., 99, 263501(2011).

    [231] T.-M. Tsai, K.-C. Chang, T.-C. Chang, Y.-E. Syu, K.-H. Liao, B.-H. Tseng, S. M. Sze. Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment. Appl. Phys. Lett., 101, 112906(2012).

    [232] K.-C. Chang, T.-M. Tsai, R. Zhang, T.-C. Chang, K.-H. Chen, J.-H. Chen, T.-F. Young, J. C. Lou, T.-J. Chu, C.-C. Shih, J.-H. Pan, Y.-T. Su, Y.-E. Syu, C.-W. Tung, M.-C. Chen, J.-J. Wu, Y. Hu, S. M. Sze. Electrical conduction mechanism of Zn:SiOx resistance random access memory with supercritical CO2 fluid process. Appl. Phys. Lett., 103, 083509(2013).

    [233] K.-C. Chang, C.-H. Pan, T.-C. Chang, T.-M. Tsai, R. Zhang, J.-C. Lou, T.-F. Young, J.-H. Chen, C.-C. Shih, T.-J. Chu, J.-Y. Chen, Y.-T. Su, J.-P. Jiang, K.-H. Chen, H.-C. Huang, Y.-E. Syu, D.-S. Gan, S. M. Sze. Hopping effect of hydrogen-doped silicon oxide insert RRAM by supercritical CO2 fluid treatment. IEEE Electron Device Lett., 34, 617-619(2013).

    [234] K.-H. Chen, K.-C. Chang, T.-C. Chang, T.-M. Tsai, S.-P. Liang, T.-F. Young, Y.-E. Syu, S. M. Sze. Improvement of bipolar switching properties of Gd:SiOx RRAM devices on indium tin oxide electrode by low-temperature supercritical CO2 treatment. Nano. Res. Lett., 11, 52(2016).

    [235] C. Ye, J.-J. Wu, C.-H. Pan, T.-M. Tsai, K.-C. Chang, H. Wu, N. Deng, H. Qian. Boosting the performance of resistive switching memory with a transparent ITO electrode using supercritical fluid nitridation. RSC Adv., 7, 11585-11590(2017).

    [236] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, H. Renner. What is–and what is not–an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [237] B. Jin, C. Argyropoulos. Nonreciprocal transmission in nonlinear PT-symmetric metamaterials using epsilon-near-zero media doped with defects. Adv. Opt. Mater., 7, 1901083(2019).

    [238] X. Jiang, H. Lu, Q. Li, H. Zhou, S. Zhang, H. Zhang. Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 µm. Nanophotonics, 7, 1835-1843(2018).

    [239] S. Saha, B. T. Diroll, J. Shank, Z. Kudyshev, A. Dutta, S. N. Chowdhury, T. S. Luk, S. Campione, R. D. Schaller, V. M. Shalaev, A. Boltasseva, M. G. Wood. Broadband, high-speed, and large-amplitude dynamic optical switching with yttrium-doped cadmium oxide. Adv. Funct. Mater., 30, 1908377(2020).

    [240] A. D. Neira, G. A. Wurtz, A. V. Zayats. All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity. Photon. Res., 6, B1-B5(2018).

    [241] W. Wang, Z. Guan, H. Xu. A high speed electrically switching reflective structural color display with large color gamut. Nanoscale, 13, 1164-1171(2021).

    [242] J. Bohn, T. S. Luk, C. Tollerton, S. W. Hutchings, I. Brener, S. Horsley, W. L. Barnes, E. Hendry. All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nat. Commun., 12, 1017(2021).

    [243] Z. Chai, X. Hu, F. Wang, C. Li, Y. Ao, Y. Wu, K. Shi, H. Yang, Q. Gong. Ultrafast on-chip remotely-triggered all-optical switching based on epsilon-near-zero nanocomposites. Laser Photon. Rev., 11, 1700042(2017).

    [244] Z. Lu, W. Zhao, K. Shi. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photon. J., 4, 735-740(2012).

    [245] H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, H. A. Atwater. Nanoscale conducting oxide PlasMOStor. Nano Lett., 14, 6463-6468(2014).

    [246] H. Zhao, Y. Wang, A. Capretti, L. D. Negro, J. Klamkin. Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide. IEEE J. Sel. Top. Quantum Electron., 21, 192-198(2015).

    [247] J. Baek, J.-B. You, K. Yu. Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt. Express, 23, 15863-15876(2015).

    [248] U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, J. Leuthold. Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides. IEEE Photon. J., 8, 4800813(2016).

    [249] G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, E. E. Kriezis. Transparent conducting oxide electro-optic modulators on silicon platforms: a comprehensive study based on the drift-diffusion semiconductor model. J. Appl. Phys., 121, 023109(2017).

    [250] S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, G. A. Keeler. Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide. IEEE Photon. J., 9, 6601307(2017).

    [251] E. Li, Q. Gao, R. T. Chen, A. X. Wang. Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume. Nano Lett., 18, 1075-1081(2018).

    [252] M. H. Tahersima, Z. Ma, Y. Gui, S. Sun, H. Wang, R. Amin, H. Dalir, R. Chen, M. Miscuglio, V. J. Sorger. Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics. Nanophotonics, 8, 1559-1566(2019).

    [253] R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, R. T. Chen, H. Dalir, V. J. Sorger. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica, 7, 333-335(2020).

    [254] Q. Gao, E. Li, A. X. Wang. Comparative analysis of transparent conductive oxide electro-absorption modulators. Opt. Mater. Express, 8, 2850-2862(2018).

    [255] Q. Gao, E. Li, B. Zhou, A. X. Wang. Hybrid silicon-conductive oxide-plasmonic electro-absorption modulator with 2-V swing voltage. J. Nanophoton., 13, 036005(2019).

    [256] A. Forouzmand, H. Mosallaei. Electro-optical amplitude and phase modulators based on tunable guided-mode resonance effect. ACS Photon., 6, 2860-2869(2019).

    [257] S. Rajput, V. Kaushik, S. Jain, P. Tiwari, A. K. Srivastava, M. Kumar. Optical modulation in hybrid waveguide based on Si-ITO heterojunction. J. Lightwave Technol., 38, 1365-1371(2020).

    [258] Y. Sha, J. Wu, Z. T. Xie, H. Y. Fu, Q. Li. Comparison study of multi-slot designs in epsilon-near-zero waveguide-based electro-optical modulators. IEEE Photon. J., 13, 4800412(2021).

    [259] S. Zhu, G. Q. Lo, D. L. Kwong. Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration. Opt. Express, 22, 17930-17947(2014).

    [260] M. Ayata, Y. Nakano, T. Tanemura. Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer. Jpn. J. Appl. Phys., 55, 042201(2016).

    [261] L. Jin, Q. Chen, W. Liu, S. Song. Electro-absorption modulator with dual carrier accumulation layers based on epsilon-near-zero ITO. Plasmonics, 11, 1087-1092(2016).

    [262] J.-S. Kim, J. T. Kim. Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler. J. Phys. D, 49, 075101(2016).

    [263] M. Y. Abdelatty, M. M. Badr, M. A. Swillam. Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides. J. Lightwave Technol., 36, 4198-4204(2018).

    [264] X. Qiu, X. Ruan, Y. Li, F. Zhang. Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator. Opt. Express, 26, 13902-13914(2018).

    [265] L. Jin, L. Wen, L. Liang, Q. Chen, Y. Sun. Polarization-insensitive surface plasmon polarization electro-absorption modulator based on epsilon-near-zero indium tin oxide. Nano. Res. Lett., 13, 39(2018).

    [266] M. M. Badr, M. M. Elgarf, M. A. Swillam. Silicon ring resonator electro-optical modulator utilizing epsilon-near-zero characteristics of indium tin oxide. Phys. Scr., 94, 125507(2019).

    [267] S. Feng, K. Halterman. Coherent perfect absorption in epsilon-near-zero metamaterials. Phys. Rev. B, 86, 165103(2012).

    [268] T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, M. B. Sinclair. Directional perfect absorption using deep subwavelength low-permittivity films. Phys. Rev. B, 90, 085411(2014).

    [269] S. Zhong, Y. Ma, S. He. Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials. Appl. Phys. Lett., 105, 023504(2014).

    [270] J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, C. K. Hwangbo. Broadband epsilon-near-zero perfect absorption in the near-infrared. Sci. Rep., 5, 12788(2015).

    [271] T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, C. K. Hwangbo. General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films. Sci. Rep., 6, 22941(2016).

    [272] J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, C. Ronning. Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers. Phys. Rev. Appl., 8, 014009(2017).

    [273] V. Bruno, S. Vezzoli, C. DeVault, T. Roger, M. Ferrera, A. Boltasseva, V. M. Shalaev, D. Faccio. Dynamical control of broadband coherent absorption in ENZ films. Micromachines (Basel), 11, 110(2020).

    [274] J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, J. Guo. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photon., 5, 776-781(2018).

    [275] J. Kim, E. G. Carnemolla, C. DeVault, A. M. Shaltout, D. Faccio, V. M. Shalaev, A. V. Kildishev, M. Ferrera, A. Boltasseva. Dynamic control of nanocavities with tunable metal oxides. Nano Lett., 18, 740-746(2018).

    [276] P. Zhou, G. Zheng, F. Xian, L. Xu. Dynamically switchable polarization-independent and broadband metasurface perfect absorber in the visible and near-infrared spectra regime. Results Phys., 11, 278-282(2018).

    [277] Z. Wang, P. Zhou, G. Zheng. Electrically switchable highly efficient epsilon-near-zero metasurfaces absorber with broadband response. Results Phys., 14, 102376(2019).

    [278] K. Chaudhuri, M. Alhabeb, Z. Wang, V. M. Shalaev, Y. Gogotsi, A. Boltasseva. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photon., 5, 1115-1122(2018).

    [279] S. Lee, T. Q. Tran, M. Kim, H. Heo, J. Heo, S. Kim. Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect. Opt. Express, 23, 33350-33358(2015).

    [280] M. Lobet, B. Majerus, L. Henrard, P. Lambin. Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials. Phys. Rev. B, 93, 235424(2016).

    [281] S. S. Mirshafieyan, D. A. Gregory. Electrically tunable perfect light absorbers as color filters and modulators. Sci. Rep., 8, 2635(2018).

    [282] K. Halterman, M. Alidoust, A. Zyuzin. Epsilon-near-zero response and tunable perfect absorption in Weyl semimetals. Phys. Rev. B, 98, 085109(2018).

    [283] P. T. Dang, K. Q. Le, J.-H. Lee, T. K. Nguyen. A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces. Micromachines (Basel), 10, 673(2019).

    [284] L. Zhang, K. Wang, H. Chen, Y. Zhang. Robust conformal perfect absorber involving lossy ultrathin film. Photonics, 7, 57(2020).

    [285] R. Bikbaev, S. Vetrov, I. Timofeev. Epsilon-near-zero absorber by Tamm plasmon polariton. Photonics, 6, 28(2019).

    [286] Y. Li, C. Argyropoulos. Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides. Opt. Lett., 43, 1806-1809(2018).

    [287] B. X. Wang, M. Q. Liu, T. C. Huang, C. Y. Zhao. Micro/nanostructures for far-field thermal emission control: an overview. ES Energy Environ., 6, 18-38(2019).

    [288] V. Caligiuri, M. Palei, M. Imran, L. Manna, R. Krahne. Planar double-epsilon-near-zero cavities for spontaneous emission and Purcell effect enhancement. ACS Photon., 5, 2287-2294(2018).

    [289] A. R. Davoyan, N. Engheta. Nonreciprocal emission in magnetized epsilon-near-zero metamaterials. ACS Photon., 6, 581-586(2019).

    [290] X. Duan, F. Zhang, Z. Qian, H. Hao, L. Shan, Q. Gong, Y. Gu. Accumulation and directionality of large spontaneous emission enabled by epsilon-near-zero film. Frontiers in Optics + Laser Science APS/DLS, JW4A.69(2019).

    [291] V. Caligiuri, G. Biffi, M. Palei, B. Martín-García, R. D. Pothuraju, Y. Bretonnière, R. Krahne. Angle and polarization selective spontaneous emission in dye-doped metal/insulator/metal nanocavities. Adv. Opt. Mater., 8, 1901215(2020).

    [292] Z. Sakotic, A. Krasnok, N. Cselyuszka, N. Jankovic, A. Alú. Berreman embedded eigenstates for narrow-band absorption and thermal emission. Phys. Rev. Appl., 13, 064073(2020).

    [293] A. Alù, N. Engheta. Dielectric sensing in ε-near-zero narrow waveguide channels. Phys. Rev. B, 78, 045102(2008).

    [294] H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chavez, J. L. Olvera-Cervantes, J. Martinez-Brito, L. G. Guerrero-Ojeda. Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure. IEEE Trans. Microw. Theory Tech., 59, 1863-1868(2011).

    [295] A. K. Jha, M. J. Akhtar. Design of multilayered epsilon-near-zero microwave planar sensor for testing of dispersive materials. IEEE Trans. Microw. Theory Tech., 63, 2418-2426(2015).

    [296] V. Pacheco-Peña, M. Beruete, P. Rodríguez-Ulibarri, N. Engheta. On the performance of an ENZ-based sensor using transmission line theory and effective medium approach. New J. Phys., 21, 043056(2019).

    [297] Z. Fusco, M. Taheri, R. Bo, T. Tran-Phu, H. Chen, X. Guo, Y. Zhu, T. Tsuzuki, T. P. White, A. Tricoli. Non-periodic epsilon-near-zero metamaterials at visible wavelengths for efficient non-resonant optical sensing. Nano Lett., 20, 3970-3977(2020).

    [298] Z. Meng, H. Cao, R. Liu, X. Wu. An electrically tunable dual-wavelength refractive index sensor based on a metagrating structure integrating epsilon-near-zero materials. Sensors, 20, 2301(2020).

    [299] T. Yang, C. Ding, R. W. Ziolkowski, Y. J. Guo. A controllable plasmonic resonance in a SiC-loaded single-polarization single-mode photonic crystal fiber enables its application as a compact LWIR environmental sensor. Materials (Basel), 13, 3915(2020).

    [300] W.-C. Hsu, E. Li, B. Zhou, A. X. Wang. Characterization of field-effect mobility at optical frequency by microring resonators. Photon. Res., 9, 615-621(2021).

    [301] M. Maier, M. Mattheakis, E. Kaxiras, M. Luskin, D. Margetis. Homogenization of plasmonic crystals: seeking the epsilon-near-zero effect. Proc. R. Soc. A, 475, 20190220(2019).

    [302] Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, P. N. Prasad. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep., 795, 1-51(2019).

    [303] I. Abdelwahab, P. Dichtl, G. Grinblat, K. Leng, X. Chi, I. Park, M. P. Nielsen, R. F. Oulton, K. P. Loh, S. A. Maier. Giant and tunable optical nonlinearity in single-crystalline 2D perovskites due to excitonic and plasma effects. Adv. Mater., 31, 1902685(2019).

    [304] H. Kim, N. A. Charipar, A. Piqué. Tunable permittivity of La-doped BaSnO3 thin films for near- and mid-infrared plasmonics. J. Phys. D, 53, 365103(2020).

    [305] P. Zheng, Y. G. Shi, A. F. Fang, T. Dong, K. Yamaura, N. L. Wang. The charge carrier localization in the cubic perovskite BaOsO3 revealed by an optical study. J. Phys. Condens. Matter, 26, 435601(2014).

    [306] S. S. Kharintsev, A. V. Kharitonov, A. M. Alekseev, S. G. Kazarian. Superresolution stimulated Raman scattering microscopy using 2-ENZ nano-composites. Nanoscale, 11, 7710-7719(2019).

    [307] Y. Ran, H. Lu, S. Zhao, Q. Guo, C. Gao, Z. Jiang, Z. Wang. Stoichiometry-modulated dual epsilon-near-zero characteristics of niobium nitride films. Appl. Surf. Sci., 537, 147981(2021).

    [308] X. Li, C. Rizza, S. A. Schulz, A. Ciattoni, A. Di Falco. Conformable optical coatings with epsilon near zero response. APL Photon., 4, 056107(2019).

    [309] E. Nahvi, I. Liberal, N. Engheta. Soft surfaces and enhanced nonlinearity enabled via epsilon-near-zero media doped with zero-area perfect electric conductor inclusions. Opt. Lett., 45, 4591-4594(2020).

    [310] L. Shen, X. Lin, B. Zheng, M. Y. Musa, Z. Xu, X. Zhang, H. Wang. Analog of giant magnetoimpedance in magnetized ε-near-zero plasma. Opt. Lett., 44, 991-994(2019).

    [311] L. Zhao, Y. Feng, B. Zhu, J. Zhao. Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants. Opt. Express, 27, 20073-20083(2019).

    [312] A. Forouzmand, H. Mosallaei. Tunable dual-band amplitude modulation with a double epsilon-near-zero metasurface. J. Opt., 22, 094001(2020).

    [313] V. Popov, S. Tretyakov, A. Novitsky. Brewster effect when approaching exceptional points of degeneracy: epsilon-near-zero behavior. Phys. Rev. B, 99, 045146(2019).

    [314] K. Ito, Y. Yamada, A. Miura, H. Iizuka. High-aspect-ratio mushroom-like silica nanopillars immersed in air: epsilon-near-zero metamaterials mediated by a phonon-polaritonic anisotropy. RSC Adv., 9, 16431-16438(2019).

    [315] I. A. Kolmychek, A. R. Pomozov, V. B. Novikov, A. P. Leontiev, K. S. Napolskii, T. V. Murzina. Anomalous birefringence and enhanced magneto-optical effects in epsilon-near-zero metamaterials based on nanorods’ arrays. Opt. Express, 27, 32069-32074(2019).

    [316] M. Coppolaro, M. Moccia, G. Castaldi, N. Engheta, V. Galdi. Non-Hermitian doping of epsilon-near-zero media. Proc. Natl. Acad. Sci. USA, 117, 13921-13928(2020).

    [317] J. Wu, X. Yang. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks. Opt. Express, 25, 27724-27735(2017).

    [318] J. Wu. Beat-like frequency pattern of extraordinary transmission and reflection in PT-symmetric Fibonacci aperiodic optical networks of waveguide rings. Phys. Lett. A, 383, 125915(2019).

    [319] J. Yang, K. Minn, A. Anopchenko, S. Gurung, H. W. H. Lee. Excitation of epsilon-near-zero mode in optical fiber. IEEE Photonics Conference (IPC), 1-2(2019).

    [320] M. S. Hossain, S. M. A. Razzak, C. Markos, N. H. Hai, M. S. Habib, M. S. Habib. Highly birefringent, low-loss, and near-zero flat dispersion ENZ based THz photonic crystal fibers. IEEE Photon. J., 12, 7202109(2020).

    [321] M. Kim, S. Kim. Epsilon-near-zero photonic crystal fibers for a large mode separation of orbital angular momentum modes. Optik, 204, 164209(2020).

    [322] T. Yang, C. Ding, R. W. Ziolkowski, Y. J. Guo. An epsilon-near-zero (ENZ) based, ultra-wide bandwidth terahertz single-polarization single-mode photonic crystal fiber. J. Lightwave Technol., 39, 223-232(2021).

    [323] Z.-Q. Zhang, P. Sheng. Wave localization in random networks. Phys. Rev. B, 49, 83-89(1994).

    [324] M. Li, Y. Liu, Z.-Q. Zhang. Photonic band structure of Sierpinski waveguide networks. Phys. Rev. B, 61, 16193-16200(2000).

    [325] S.-K. Cheung, T.-L. Chan, Z.-Q. Zhang, C. T. Chan. Large photonic band gaps in certain periodic and quasiperiodic networks in two and three dimensions. Phys. Rev. B, 70, 125104(2004).

    [326] Z.-Y. Wang, X. Yang. Strong attenuation within the photonic band gaps of multiconnected networks. Phys. Rev. B, 76, 235104(2007).

    [327] J. Wu, X. Yang. Theoretical design of a pump-free ultrahigh efficiency all-optical switching based on a defect ring optical waveguide network. Ann. Phys. (Leipzig), 531, 1800258(2019).

    [328] T.-S. Jiang, M. Xiao, Z.-Q. Zhang, C.-T. Chan. Physics and topological properties of periodic and aperiodic transmission line networks. Acta Phys. Sin., 69, 150301(2020).

    [329] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [330] C. M. Bender, D. C. Brody, H. F. Jones. Complex extension of quantum mechanics. Phys. Rev. Lett., 89, 270401(2002).

    [331] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani. Theory of coupled optical PT-symmetric structures. Opt. Lett., 32, 2632-2634(2007).

    [332] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [333] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric microring lasers. Science, 346, 975-978(2014).

    [334] L. Li, Y. Cao, Y. Zhi, J. Zhang, Y. Zou, X. Feng, B.-O. Guan, J. Yao. Polarimetric parity-time symmetry in a photonic system. Light Sci. Appl., 9, 169(2020).

    [335] Y. Zhi, X. Yang, J. Wu, S. Du, P. Cao, D. Deng, C. T. Liu. Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks. Photon. Res., 6, 579-586(2018).

    [336] J.-Y. Wu, X.-H. Wu, X.-B. Yang, H.-Y. Li. Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios. Chin. Phys. B, 28, 104208(2019).

    [337] H. Li, X. Yang, J. Wu, X. Wu. Extraordinary characteristics of one-dimensional PT-symmetric ring optical waveguide networks with near-isometric and isometric arms. Europhys. Lett., 131, 54001(2020).

    [338] Y. Fu, Y. Xu, H. Chen. Zero index metamaterials with PT symmetry in a waveguide system. Opt. Express, 24, 1648-1657(2016).

    [339] Y. Fu, X. Zhang, Y. Xu, H. Chen. Design of zero index metamaterials with PT symmetry using epsilon-near-zero media with defects. J. Appl. Phys., 121, 094503(2017).

    [340] Y. Li, C. Argyropoulos. Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides. Phys. Rev. B, 99, 075413(2019).

    Jiaye Wu, Ze Tao Xie, Yanhua Sha, H. Y. Fu, Qian Li. Epsilon-near-zero photonics: infinite potentials[J]. Photonics Research, 2021, 9(8): 1616
    Download Citation