• High Power Laser Science and Engineering
  • Vol. 9, Issue 3, 03000e44 (2021)
C. Jiang1、2、3, W. P. Wang1、*, S. Weber4、5, H. Dong1、3, Y. X. Leng1、2, R. X. Li1、2, and Z. Z. Xu1、2
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
  • 2School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
  • 3University of Chinese Academy of Sciences, Beijing100049, China
  • 4Institute of Physics of the ASCR, ELI-Beamlines Project, 18221Prague, Czech Republic
  • 5School of Science, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    DOI: 10.1017/hpl.2021.28 Cite this Article Set citation alerts
    C. Jiang, W. P. Wang, S. Weber, H. Dong, Y. X. Leng, R. X. Li, Z. Z. Xu. Direct acceleration of an annular attosecond electron slice driven by near-infrared Laguerre–Gaussian laser[J]. High Power Laser Science and Engineering, 2021, 9(3): 03000e44 Copy Citation Text show less

    Abstract

    A new near-infrared direct acceleration mechanism driven by Laguerre–Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum. Three-dimensional simulations show that a 2-μm circularly polarized ${\mathrm{LG}}_p^l$ (p = 0, l = 1, σz = -1) laser can directly manipulate attosecond electron slices in additional dimensions (angular directions) and give them annular structures and angular momentums. These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators, edge-enhancement electron imaging, structured X-ray generation, and analysis and manipulation of nanomaterials.
    $$\begin{align}&{\boldsymbol{E}}_{\boldsymbol{\perp}}={E}_0\sqrt{\frac{2p!}{\pi \left(p+l\right)!}}\frac{1}{w(x)}{\left[\frac{r\sqrt{2}}{w(x)}\right]}^l\exp \left[\frac{-{r}^2}{w^2(x)}\right]{L}_p^l\left[\frac{2{r}^2}{w^2(x)}\right]\notag\\&\qquad\times\exp \left( il\phi \right) \mathsf{\exp}\left[\frac{{{i}}{{{k}}}_{\mathsf{0}}{{{r}}}^{2}x}{2\left({\mathit{{x}}}^{2}+{\mathit{{x}}}_{{\rm R}}^{2}\right)}\right]\notag\\&\qquad\times\mathsf{\exp}\left[-\mathit{{i}}\left(2\mathit{{p}}+\mathit{{l}}+\mathsf{1}\right){\mathrm{arctan}}\left(\frac{\mathit{{x}}}{{\mathit{{x}}}_{{\rm R}}}\right)+\mathit{\mathsf{\psi}}\right]\notag\\&\qquad\times\left[{\boldsymbol{e}}_{{{y}}}+\mathsf{\exp}\left(\frac{\mathit{{i}}{\mathit{\mathsf{\pi \sigma}}}_{\mathit{z}}}{2}\right){\boldsymbol{e}}_{{\textit{z}}}\right],\end{align}$$((1))

    View in Article

    $$\begin{align}{\mathit{{E}}}_{\mathit{{x}}}&=\frac{\mathit{{i}}}{\mathit{{k}}}\left[\left(\frac{\mathit{{z}}}{{\mathit{{r}}}^{2}}-\frac{2\mathit{{z}}}{\mathit{{w}}\left(\mathit{{x}}\right)}+\mathit{{i}{l}}\frac{\mathit{{y}}}{{\mathit{{r}}}^{2}}+\frac{\mathit{{i}{kx}}}{{\mathit{{x}}}^{2}+{\mathit{{x}}}_{{\rm R}}^{2}}\right){\mathit{{E}}}_{\mathit{{z}}}\right.\notag\\&\quad\left.+\left(\frac{\mathit{{y}}}{{\mathit{{r}}}^{2}}-\frac{2\mathit{{y}}}{\mathit{{w}}\left(\mathit{{x}}\right)}-\mathit{{i}{l}}\frac{\mathit{{z}}}{{\mathit{{r}}}^{2}}+\frac{\mathit{{i}{kx}}}{{\mathit{{x}}}^{2}+{\mathit{{x}}}_{{\rm R}}^{2}}\right){\mathit{{E}}}_{\mathit{{y}}}\right].\end{align}$$((2))

    View in Article

    C. Jiang, W. P. Wang, S. Weber, H. Dong, Y. X. Leng, R. X. Li, Z. Z. Xu. Direct acceleration of an annular attosecond electron slice driven by near-infrared Laguerre–Gaussian laser[J]. High Power Laser Science and Engineering, 2021, 9(3): 03000e44
    Download Citation