• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 2, 129 (2017)
LIU Jie*, WANG Lu, JIANG Yang, MA Zi-Guang, WANG Wen-Qi, SUN Ling, JIA Hai-Qiang, WANG Wen-Xin, and CHEN Hong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.02.001 Cite this Article
    LIU Jie, WANG Lu, JIANG Yang, MA Zi-Guang, WANG Wen-Qi, SUN Ling, JIA Hai-Qiang, WANG Wen-Xin, CHEN Hong. A prototype photon detector based on interband transition of quantum wells[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 129 Copy Citation Text show less
    References

    [1] Qiu W, Hu W, Lin C, .et al. Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays [J]. Opt. Lett. 2016, 41(4), 828-831.

    [2] Bai Z Z, Xu Z C, Zhou Y, et al. 320 x 256 dual-color mid-wavelength infrared InAs/GaSb superlattice focal plane arrays [J]. Journal of Infrared and Millimeter Waves, 2015, 34(6), 716-720.

    [3] Zhou Y, Chen JX, Xu Z C, et al. High performance long wavelength superlattice photodetectors based on be doped absorber region [J]. Chinese Physics Letters,2014, 31(10).

    [4] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9):091101.

    [5] Qiu W C, HU W D. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(2):27001-027001.

    [6] Hu W D, Liang J, Yue F Y, et al. Recent progress of subwavelength photon trapping HgCdTe infrared detector[J]. Infrared Millim. Waves. 2016, 35(1):25-36.

    [7] Liu D, Lin C, Zhou S M, et al. Ohmic contact of Au/Mo on Hg1-xCdxTe[J]. Journal of Electronic Materials. 2016, 45(6):2802-2807.

    [8] Ye Z H, Zhang P, Li Y, et al. Design of spectral crosstalk suppressing structure in two-color HgCdTe infrared focal plane arrays detector[J]. Optical and Quantum Electronics,2014, 46(10):1283-1289.

    [9] Rogalski A. Infrared detectors: status and trends [J]. Progress in Quantum Electronics, 2013, 27(2-3):59-210.

    [10] Maimon S, Wicks G W. nBn detector, an infrared detectors with reduced dark current and higher operating temperature [J]. Applied Physics Letters, 2006, 89(15),151109.

    [11] Chakrabarti S, Stiff-Roberts A D, Bhattacharya P, et al. High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity [J]. IEEE Photonics Technology Letters, 2004, 16(5):1361-1363.

    [12] Zhou Y, Chen J, Xu Z, et al. Physics, Simulation, and Photonic Engineering of Photovoltaic Devices V [J], Proceedings of SPIE, 2016, Vol. 9743.

    [13] Klipstein P C, Gross Y, Aronov D, et al. Infrared Technology and Applications XXXIX [J]. Proceedings of SPIE, 2013, Vol. 8704.

    [14] Gravrand O, Destefanis G, Bisotto S,et al. Issues in HgCdTe research and expected progress in infrared detector fabrication [J]. Journal of Electronic Materials,2013, 42(11):3349-3358.

    [15] Levenson E, Lerch P, Martin M C. Infrared imaging: Synchrotrons vs. arrays, resolution vs. speed [J]. Infrared Physics & Technology,2006, 49(1-2):45-52.

    [16] Jing Y, Li Z, Li Q, et al. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector [J]. Aip Advances, 2016, 6(4).

    [17] Lu W, Li L, Zheng H, et al. Development of an infrared detector: Quantum well infrared photodetector [J]. Science in China Series G-Physics Mechanics & Astronomy,2009, 52(7):969-977.

    [18] Shi Z W, Wang L, Zhen H, et al. Molecular beam epitaxy growth of peak wavelength-controlled InGaAs/AlGaAs quantum wells for 4.3-μm mid-wavelength infrared detection [J]. Nanoscale Res. Lett., 2013, 8(1):1-5.

    [19] Rogalski A. Quantum well photoconductors in infrared detector technology [J]. Journal of Applied Physics, 2003, 93(8), 4355-4391.

    [20] Levine B F. Quantum-well infrared photodetectors [J]. Journal of Applied Physics,1993, 74(8), R1-R81.

    [21] Ridley B K. Hot electrons in low-dimensional structures [J]. Reports on Progress in Physics, 1991, 54(2), 169-256.

    [22] Luque A, Marti A. Photovoltaics towards the intermediate band [J]. Nature Photonics, 2011, 5(3):137-138.

    [23] Xu Z Y, Lu Z D, Yang X P, et al. Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates [J]. Physical Review B, 54(16): 11528-11531.

    [24] Casey H C, Sell D D, Wecht K W. Concentration dependence of the absorption coefficient for n-and p-type GaAs between 1.3 and 1.6 eV [J]. Journal of Applied Physics,1975, 46(1):250-257.

    [25] Green M A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients [J]. Solar Energy Materials and Solar Cells, 2008, 92(11):1305-1310.

    [26] Mooney P M, LeGoues F K, Tersoff J, et al. Nucleation of dislocations in SiGe layers grown on (001)Si [J]. Journal of Applied Physics, 1994, 75(8):3968-3977.

    [27] Jain S C, Willander M, Maes H. Stresses and strains in epilayers, stripes and quantum structures of III -V compound semiconductors [J]. Semiconductor Science and Technology, 1996, 11(5):641.

    [28] Dunstan D J, Young S, Dixon R H. Geometrical theory of critical thickness and relaxation in strained-layer growth [J]. Journal of Applied Physics,1991, 70(6):3038-3045.

    [29] Wang W Q, Wang J L, Jiang Y, et al. Carrier transport in III–V quantum-dot structures for solar cells or photodetectors [J]. Chin. Phys. B, 2016, 25(9):97307-097307.

    [30] Fry P W, Itskevich I E, Parnell S R, et al. Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots [J]. Physical Review B, 2000, 62(24),16784-16791.

    [31] Prins F E, Lehr G, Burkard M, et al. Photoluminescence excitation spectroscopy on intermixed GaAs/AlGaAs quantum wires [J]. Applied Physics Letters, 1993, 62(12),1365-1367.

    [32] Talapin D V, Koeppe R, G tzinger S, et al. Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality [J]. Nano Letters,2003, 3(12),1677-1681.

    [33] Ito H, Kodama S, Muramoto Y, et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4),709-727.

    [34] Nelson D F, Gershenzon M, Ashkin A, et al. Band-filling model for GaAs injection luminescence [J]. Applied Physics Letters,1963, 2(9):182-184.

    [35] Elliott R J. Intensity of optical absorption by excitons [J]. Physical Review, 108(6):1384-1389.

    [36] WoodT H. Direct measurement of the electric-field-dependent absorption coefficient in GaAs/ AlGaAs multiple quantum wells [J]. Applied Physics Letters, 1986, 48(21):1413-1415.

    [37] Gokkavas M, Dosunmu O, Unlu M S,et al. High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications [J]. IEEE Photonics Technology Letters, 2001, 13(12), 1349-1351.

    [38] Xi S P, Gu Y, Zhang Y G, et al. InGaAsP/InP photodetectors targeting on 1.06 μm wavelength detection [J]. Infrared Physics & Technology, 2016, 75: 65-69.

    [39] Walther M, Schmitz J, RehmR, et al. Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors [J]. Journal of Crystal Growth, 2005, 278(1-4):156-161.

    [40] Shao H, Li W, Torfi A, et al. Room-temperature InAsSb photovoltaic detectors for mid-infrared applications [J]. IEEE Photonics Technology Letters, 2006, 18(16),1756-1758.

    [41] Sidhu R, Ning D, Campbell J C, et al. A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells [J]. IEEE Photonics Technology Letters, 2005, 17(12):2715-2717.

    [42] Chen C H, Tetz K, Fainman Y. Resonant-cavity-enhanced p-i-n photodiode with abroad quantum-efficiency spectrum by use of an anomalous-dispersion mirror [J]. Appl. Opt. 2005, 44 (29):6131-6140.

    LIU Jie, WANG Lu, JIANG Yang, MA Zi-Guang, WANG Wen-Qi, SUN Ling, JIA Hai-Qiang, WANG Wen-Xin, CHEN Hong. A prototype photon detector based on interband transition of quantum wells[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 129
    Download Citation