• Laser & Optoelectronics Progress
  • Vol. 58, Issue 5, 0529001 (2021)
Can Li, Lü Qimeng, Yingchun Wu, Xuecheng Wu*, Xiang Gao, and Kefa Cen
Author Affiliations
  • State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou , Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP202158.0529001 Cite this Article Set citation alerts
    Can Li, Lü Qimeng, Yingchun Wu, Xuecheng Wu, Xiang Gao, Kefa Cen. Inversion Algorithm of Rainbow Signal Based on Local Minimum[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0529001 Copy Citation Text show less
    References

    [1] Roth N, Anders K, Frohn A. Simultaneous measurement of temperature and size of droplets in the micrometer range. Journal of Laser Applications, 2, 37-42(1990).

    [2] Saengkaew S, Charinpanitkul T, Vanisri H et al. Rainbow refractrometry on particles with radial refractive index gradients. Experiments in Fluids, 43, 595-601(2007).

    [3] Li H P, Rosebrock C D, Wriedt T et al. The effect of initial diameter on rainbow positions and temperature distributions of burning single-component n-Alkane droplets. Journal of Quantitative Spectroscopy and Radiative Transfer, 195, 164-175(2017).

    [4] Rosebrock C D, Shirinzadeh S, Soeken M et al. Time-resolved detection of diffusion limited temperature gradients inside single isolated burning droplets using Rainbow Refractometry. Combustion and Flame, 168, 255-269(2016).

    [5] Wu Y C, Promvongsa J, Saengkaew S et al. Phase rainbow refractometry for accurate droplet variation characterization. Optics Letters, 41, 4672-4675(2016).

    [6] Wu Y C, Crua C, Li H P et al. Simultaneous measurement of monocomponent droplet temperature/ refractive index, size and evaporation rate with phase rainbow refractometry‍. Journal of Quantitative Spectroscopy and Radiative Transfer, 214, 146-157(2018).

    [7] Wu Y C, Li H P, Wu X C et al. Change of evaporation rate of single monocomponent droplet with temperature using time-resolved phase rainbow refractometry. Proceedings of the Combustion Institute, 37, 3211-3218(2019).

    [8] Li C, Lv Q, Wu Y C et al. Measurement of transient evaporation of an ethanol droplet stream with phase rainbow refractometry and high-speed microscopic shadowgraphy. International Journal of Heat and Mass Transfer, 146, 118843(2020).

    [9] Wu X C, Jiang H Y, Wu Y C et al. One-dimensional rainbow thermometry system by using slit apertures. Optics Letters, 39, 638-641(2014).

    [10] Wu Y C, Promvongsa J, Wu X C et al. One-dimensional rainbow technique using Fourier domain filtering. Optics Express, 23, 30545-30556(2015).

    [11] Cao J Z, Li C, Wu Y C et al. Development and experimental test of compact rainbow refractometer. Laser & Optoelectronics Progress, 56, 101201(2019).

    [12] Song F H, Xu C L, Wang S M. Reversion algorithm for liquid column parameters with rainbow refractometry based on Debye theory. Acta Optica Sinica, 31, 1212006(2011).

    [13] van Beeck J P A J, Zimmer L, Riethmuller M L. Global rainbow thermometry for mean temperature and size measurement of spray droplets. Particle & Particle Systems Characterization, 18, 196-204(2001).

    [14] Wu Y C, Wu X C, Saengkaew S et al. Concentration and size measurements of sprays with global rainbow technique. Acta Physica Sinica, 62, 090703(2013).

    [15] Song F H, Li Z F. Reversion algorithm of global rainbow technique based on optimization process. Laser & Optoelectronics Progress, 53, 071203(2016).

    [16] Laven P. Simulation of rainbows, coronas and glories using Mie theory and the Debye series. Journal of Quantitative Spectroscopy and Radiative Transfer, 89, 257-269(2004).

    [17] Nussenzveig H M. High-frequency scattering by a transparent sphere. I. Direct reflection and transmission. Journal of Mathematical Physics, 10, 82-124(1969).

    [18] Nussenzveig H M. High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory. Journal of Mathematical Physics, 10, 125-176(1969).

    [19] Saengkaew S, Charinpanitkul T, Vanisri H et al. Rainbow refractrometry: on the validity domain of Airy's and Nussenzveig's theories. Optics Communications, 259, 7-13(2006).

    [20] Nocedal J, Wright S J. Numerical optimization. 2nd ed(2006).

    [21] Han S P. A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications, 22, 297-309(1977).

    [22] Powell M J D. A fast algorithm for nonlinearly constrained optimization calculations. //Watson G A. Numerical Analysis. Berlin, 630, 144-157(1978).

    [23] Wu X C, Jiang H Y, Cao K L et al. Self-calibrated global rainbow refractometry: a dual-wavelength approach. Chinese Optics Letters, 15, 042902(2017).

    Can Li, Lü Qimeng, Yingchun Wu, Xuecheng Wu, Xiang Gao, Kefa Cen. Inversion Algorithm of Rainbow Signal Based on Local Minimum[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0529001
    Download Citation