• Chinese Optics Letters
  • Vol. 20, Issue 1, 013602 (2022)
Ziyu Liu1, Limei Qi1、2、*, Feng Lan3, Chuwen Lan4、5, Jun Yang1, and Xiang Tao1
Author Affiliations
  • 1School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 3The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
  • 4Shenzhen Research Institute, Beijing University of Posts and Telecommunications, Shenzhen 518000, China
  • 5School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/COL202220.013602 Cite this Article Set citation alerts
    Ziyu Liu, Limei Qi, Feng Lan, Chuwen Lan, Jun Yang, Xiang Tao. A VO2 film-based multifunctional metasurface in the terahertz band[J]. Chinese Optics Letters, 2022, 20(1): 013602 Copy Citation Text show less
    References

    [1] B. Ferguson, X. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26(2002).

    [2] S. Katletz, M. Pfleger, H. Pühringer, M. Mikulics, N. Vieweg, O. Peters, B. Scherger, M. Scheller, M. Koch, K. Wiesauer. Polarization sensitive terahertz imaging: detection of birefringence and optical axis. Opt. Express, 20, 23025(2012).

    [3] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97(2007).

    [4] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77(2001).

    [5] N. Fang, H. Lee, C. Sun, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534(2005).

    [6] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, D. R. Smith. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag., 54, 10(2012).

    [7] E. F. Kuester, M. A. Mohamed, M. Piket-May, C. L. Holloway. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans. Antenn. Propag., 51, 2641(2003).

    [8] Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, F. Hu. Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial. Mater. Res. Express, 6, 055809(2019).

    [9] W. Liu, Z. Dai, J. Yang, Q. Sun, C. Gong, N. Zhang, K. Ueno, H. Misawa. Ultrabroad and angle tunable THz filter based on multiplexed metallic bar resonators. IEEE Photonics Technol. Lett., 30, 2103(2018).

    [10] M. Masyukov, A. N. Grebenchukov, E. A. Litvinov, A. Baldycheva, A. V. Vozianova, M. K. Khodzitsky. Photo-tunable terahertz absorber based on intercalated few-layer graphene. J. Opt., 22, 095105(2020).

    [11] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [12] J. Hao, Y. Yuan, L. Ran, T. Jiang, J. Kong, C. Chan, L. Zhou. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett., 99, 063908(2007).

    [13] Y. Wei, N. Panoiu. Polarization control using passive and active crossed graphene gratings. Opt. Express, 26, 1882(2018).

    [14] Y. Jiang, L. Wang, J. Wang, C. N. Akwuruoha, W. Cao. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies. Opt. Express, 25, 27616(2017).

    [15] H. Wang, Z. Zhang, K. Zhao, W. Liu, Y. Lu. Independent phase manipulation of co- and cross-polarizations with all-dielectric metasurface. Chin. Opt. Lett., 19, 053601(2021).

    [16] J. Huang, T. Fu, H. Li, Z. Shou, X. Gao. A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface. Chin. Opt. Lett., 18, 013102(2020).

    [17] G. Zhou, P. Dai, J. Wu, B. Jin, Q. Wen, G. Zhu, Z. Shen, C. Zhang, L. Kang, W. Xu, J. Chen, P. Wu. Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface. Opt. Express, 25, 17322(2017).

    [18] Z. Ma, S. M. Hanham, Y. Gong, M. Hong. All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances. Opt. Lett., 43, 911(2018).

    [19] L. Cong, N. Xu, J. Gu, R. Singh, J. Han, W. Zhang. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photon. Rev., 8, 626(2014).

    [20] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [21] Z. Song, J. Zhang. Achieving broadband absorption and polarization conversion in the same frequency band. Opt. Express, 28, 12487(2020).

    [22] Y. Gao, X. Xiong, Z. Wang, F. Chen, R. Peng, M. Wang. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation. Phys. Rev. X, 10, 031035(2020).

    [23] J. Fan, Y. Cheng. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J. Phys. D, 53, 025109(2020).

    [24] Y. Li, J. Luo, X. Li, M. Pu, X. Luo. Switchable quarter-wave plate and half-wave plate based on phase-change metasurface. IEEE Photonics J., 12, 4600410(2020).

    [25] Z. Wei, J. Jiang, Y. Jing, L. Shuang, L. Jiang. Functionality-switchable terahertz polarization converter based on a graphene-integrated planar metamaterial. OSA Continuum, 1, 124(2018).

    [26] L. Peng, X. Li, X. Gao, X. Jiang, S. Li. Methodology for the design of a multi-functional device with switchable absorption and polarization conversion modes by graphene and metallic metasurfaces. Opt. Mater. Express, 9, 687(2019).

    [27] H. Li, W. Xu, Q. Cui, Y. Wang, J. Yu. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Opt. Express, 28, 40060(2020).

    [28] Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, Y. Liu. Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett., 97, 021111(2010).

    [29] L. Liu, L. Kang, T. S. Mayer, D. H. Werner. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun., 7, 13236(2016).

    [30] C. Zhang, G. Zhou, J. Wu, Y. Tang, P. Wu. Active control of terahertz waves using vanadium-dioxide-embedded metamaterials. Phys. Rev. Appl., 11, 054016(2019).

    [31] J. Zhao, J. Song, Y. Zhou, Y. Liu, J. Zhou. Switching between the functions of half-wave plate and quarter-wave plate simply by using a vanadium dioxide film in a terahertz metamaterial. Chin. Phys. Lett., 37, 064204(2020).

    [32] J. Luo, X. Shi, X. Luo, F. Hu, G. Li. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials. Opt. Express, 28, 30861(2020).

    [33] H. Zhang, Y. Cao, Y. Liu, Y. Li. A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling. Opt. Commun., 391, 9(2017).

    [34] Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, H. Cheng, T. Ma, Y. Lu. Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces. Chin. Opt. Lett., 19, 073602(2021).

    [35] W. Yu, H. Meng, Z. Chen, X. Li, X. Zhang, F. Wang, Z. Wei, C. Tan, X. Huang, S. Li. The bright–bright and bright–dark mode coupling-based planar metamaterial for plasmonic EIT-like effect. Opt. Commun., 414, 29(2018).

    [36] L. Han, Q. Tan, Y. Gan, W. Zhang, J. Xiong. Polarization-insensitive classical electromagnetically induced transparency metamaterial with large group delay by Dirac semimetal. Results Phys., 19, 103377(2020).

    [37] L. Zhu, Z. Xin, L. Dong, J. Guo, J. Xun, M. Zhong. Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators. RSC Adv., 8, 27342(2018).

    [38] F. Meng, Q. Wu, D. Erni, W. Ke, J. Lee. Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Trans. Microw. Theory Tech., 60, 3013(2012).

    [39] A. K. Fahad, C. Ruan, K. Chen. Dual-wide-band dual polarization terahertz linear to circular polarization converters based on bi-layered transmissive metasurfaces. Electronics, 8, 869(2019).

    [40] W. S. L. Lee, R. T. Ako, M. X. Low, M. Bhaskaran, S. Sriram, C. Fumeaux, W. Withayachumnankul. Dielectric-resonator metasurfaces for broadband terahertz quarter- and half-wave mirrors. Opt. Express, 26, 14392(2018).

    [41] Y. Hou, C. Zhang, C. Wang. High-efficiency and tunable terahertz linear-to-circular polarization converters based on all-dielectric metasurfaces. IEEE Access, 8, 140303(2020).

    [42] L. Zhu, L. Dong, J. Guo, F. Meng, X. He, C. Zha, Q. Wu. Polarization conversion based on Mie-type electromagnetically induced transparency (EIT) effect in all-dielectric metasurface. Plasmonics, 13, 1971(2018).

    [43] M. Amin, O. Siddiqui, M. Farhat. Linear and circular dichroism in graphene-based reflectors for polarization control. Phys. Rev. Appl., 13, 024046(2020).

    [44] D. Yan, M. Meng, J. Li, J. Li, X. Li. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave. Opt. Express, 28, 29843(2020).

    [45] J. Li, J. Yao. Manipulation of terahertz wave using coding Pancharatnam–Berry phase metasurface. IEEE Photonics J., 10, 5900512(2018).

    [46] J. Li, Y. Zhang, J. Li, X. Yan, L. Liang, Z. Zhang, J. Huang, J. Li, Y. Yang, J. Yao. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam–Berry coding metasurfaces. Nanoscale, 11, 5746(2019).

    [47] Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, S. Qu. Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam–Berry phase. Sci. Rep., 7, 43543(2017).

    [48] B. Xiao, F. Lan, Z. Yang, P. Mazumder, J. Yin. Broadband and high-efficiency circular-polarized terahertz frequency scanning metasurface. Photonics&Electromagnetics Research Symposium—Fall (PIERS–Fall), 3229(2019).

    [49] H. Zeng, F. Lan, Y. Zhang, T. Song, Z. Yang. Maximizing beam-scanning angle in an expected bandwidth based on terahertz metasurface with dual-mode resonance. Appl. Phys. Express, 12, 095501(2019).

    [50] L. Wang, F. Lan, Y. Zhang, S. Liang, P. Mazumder. A fractional phase-coding strategy for terahertz beam patterning on digital metasurfaces. Opt. Express, 28, 6395(2020).

    [51] S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han. Metasurfaces: convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci., 3, 1600156(2016).

    [52] X. Fu, F. Yang, C. Liu, X. Wu, T. Cui. Terahertz beam steering technologies: from phased arrays to field-programmable metasurfaces. Adv. Opt. Mater., 8, 1900628(2020).

    Data from CrossRef

    [1] Zhanshuo Sun, Xin Wang, Junlin Wang, Hao Li, Yuhang Lu, Yu Zhang. Switchable Multifunctional Terahertz Metamaterials Based on the Phase-Transition Properties of Vanadium Dioxide. Micromachines, 13, 1013(2022).

    Ziyu Liu, Limei Qi, Feng Lan, Chuwen Lan, Jun Yang, Xiang Tao. A VO2 film-based multifunctional metasurface in the terahertz band[J]. Chinese Optics Letters, 2022, 20(1): 013602
    Download Citation