• Photonics Research
  • Vol. 10, Issue 2, 516 (2022)
Daniel M. Maclure1、5、*, Jonathan J. D. McKendry1, Mohamed Sufyan Islim2, Enyuan Xie1, Cheng Chen2, Xiaobin Sun3, Xudong Liang4, Xiaohui Huang4, Hanaa Abumarshoud2, Johannes Herrnsdorf1, Erdan Gu1、6、*, Harald Haas2, and Martin D. Dawson1
Author Affiliations
  • 1Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, Glasgow G1 1RD, UK
  • 2LiFi Research and Development Centre, Department of Electronic & Electrical Engineering, University of Strathclyde, Technology & Innovation Centre, Glasgow G1 1RD, UK
  • 3Fraunhofer Center of Applied Photonics, Technology & Innovation Centre, Glasgow G1 1RD, UK
  • 4Zhixin Semiconductor (Hangzhou) Co., Ltd., Hangzhou 311200, China
  • 5e-mail: daniel.maclure@strath.ac.uk
  • 6e-mail: erdan.gu@strath.ac.uk
  • show less
    DOI: 10.1364/PRJ.445984 Cite this Article Set citation alerts
    Daniel M. Maclure, Jonathan J. D. McKendry, Mohamed Sufyan Islim, Enyuan Xie, Cheng Chen, Xiaobin Sun, Xudong Liang, Xiaohui Huang, Hanaa Abumarshoud, Johannes Herrnsdorf, Erdan Gu, Harald Haas, Martin D. Dawson. 10 Gbps wavelength division multiplexing using UV-A, UV-B, and UV-C micro-LEDs[J]. Photonics Research, 2022, 10(2): 516 Copy Citation Text show less
    References

    [1] H. Haas. LiFi is a paradigm-shifting 5G technology. Rev. Phys., 3, 26-31(2017).

    [2] D. O’Brien, S. Rajbhandari, H. Chun. Transmitter and receiver technologies for optical wireless. Philos. Trans. R. Soc. A, 378, 20190182(2020).

    [3] R. J. Drost, B. M. Sadler. Survey of ultraviolet non-line-of-sight communications. Semicond. Sci. Technol., 29, 084006(2014).

    [4] G. Chen, Z. Xu, B. M. Sadler. Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels. Opt. Express, 18, 10500-10509(2010).

    [5] A. Vavoulas, H. G. Sandalidis, N. D. Chatzidiamantis, Z. Xu, G. K. Karagiannidis. A survey on ultraviolet C-band (UV-C) communications. Commun. Surveys Tuts., 21, 2111-2133(2019).

    [6] Z. Xu, B. M. Sadler. Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag., 46, 67-73(2008).

    [7] Z. Zhang, M. Kushimoto, T. Sakai, N. Sugiyama, L. Schowalter, C. Sasaoka, H. Amano. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl. Phys. Express, 12, 8-12(2019).

    [8] H. S. Wasisto, J. D. Prades, J. Gülink, A. Waag. Beyond solid-state lighting: miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs. Appl. Phys. Rev., 6, 041315(2019).

    [9] G.-R. Lin, H.-C. Kuo, C.-H. Cheng, Y.-C. Wu, Y.-M. Huang, F.-J. Liou, Y.-C. Lee. Ultrafast 2 × 2 green micro-LED array for optical wireless communication beyond 5 Gbit/s. Photon. Res., 9, 2077-2087(2021).

    [10] D. Peng, K. Zhang, Z. Liu. Design and fabrication of fine-pitch pixelated-addressed micro-LED arrays on printed circuit board for display and communication applications. IEEE J. Electron Devices Soc., 5, 90-94(2017).

    [11] R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, A. E. Kelly. Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes. Appl. Phys. Lett., 102, 091103(2013).

    [12] M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, M. D. Dawson. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res., 5, A35-A43(2017).

    [13] S. Zhu, P. Qiu, Z. Qian, X. Shan, Z. Wang, K. Jiang, X. Sun, X. Cui, G. Zhang, D. Li, P. Tian. 2 Gbps free-space ultraviolet-C communication based on a high-bandwidth micro-LED achieved with pre-equalization. Opt. Lett., 46, 2147-2150(2021).

    [14] C. Jeon, H. W. Choi, E. Gu, M. D. Dawson, S. Member. High-density matrix-addressable AlInGaN-based 368-nm microarray light-emitting diodes. IEEE Photon. Technol. Lett., 16, 2421-2423(2004).

    [15] B. Guilhabert, D. Massoubre, E. Richardson, J. J. D. McKendry, G. Valentine, R. K. Henderson, I. M. Watson, E. Gu, M. D. Dawson. Sub-micron lithography using InGaN micro-LEDs: mask-free fabrication of LED arrays. IEEE Photon. Technol. Lett., 24, 2221-2224(2012).

    [16] X. He, E. Xie, M. S. Islim, A. A. Purwita, J. J. D. McKendry, E. Gu, H. Haas, M. D. Dawson. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm. Photon. Res., 7, B41-B47(2019).

    [17] R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photon. Technol. Lett., 28, 2023-2026(2016).

    [18] H. Amano, R. Collazo, C. D. Santi, S. Einfeldt, M. Funato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama, R. Ishii, Y. Kashima, R. Kirste, M. Kneissl, R. W. Martin, F. Mehnke, M. Meneghini, A. Ougazzaden, P. Parbrook, S. Rajan, P. Reddy. The 2020 UV emitter roadmap. J. Phys. D, 53, 503001(2020).

    [19] M. Kneissl, T. Y. Seong, J. Han, H. Amano. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics, 13, 233-244(2019).

    [20] S. W. H. Chen, Y.-M. Huang, Y.-H. Chang, Y. Lin, F.-J. Liou, Y.-C. Hsu, J. Song, J. Choi, C.-W. Chow, C.-C. Lin, R.-H. Horng, Z. Chen, J. Han, T. Wu, H.-C. Kuo. High-bandwidth green semipolar (20-21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photon., 7, 2228-2235(2020).

    [21] D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photon. Technol. Lett., 26, 637-640(2014).

    [22] J. F. C. Carreira, E. Xie, R. Bian, J. Herrnsdorf, H. Haas, E. Gu, M. J. Strain, M. D. Dawson. Gigabit per second visible light communication based on AlGaInP red micro-LED micro-transfer printed onto diamond and glass. Opt. Express, 28, 12149-12156(2020).

    [23] H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, Z. Xu. “Modeling of non-line-of-sight ultraviolet scattering channels for communication. IEEE J. Sel. Areas Commun., 27, 1535-1544(2009).

    [24] X. Liu, Z. Wei, M. Li, L. Wang, Z. Liu, C. Yu, L. Wang, Y. Luo, H. Y. Fu. Experimental investigation of 16.6 Gbps SDM-WDM visible light communication based on a neural network receiver and tricolor mini-LEDs. Opt. Lett., 46, 2888-2891(2021).

    [25] G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Optics Express, 20, B501-B506(2012).

    [26] X. Sun, Z. Zhang, A. Chaaban, T. K. Ng, C. Shen, R. Chen, J. Yan, H. Sun, X. Li, J. Wang, J. Li, M.-S. Alouini, B. S. Ooi. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation. Opt. Express, 25, 23267-23274(2017).

    [27] https://doi.org/10.15129/1899e15a-2d46-4e80-9d3f-93f3b66abeb7. https://doi.org/10.15129/1899e15a-2d46-4e80-9d3f-93f3b66abeb7

    Daniel M. Maclure, Jonathan J. D. McKendry, Mohamed Sufyan Islim, Enyuan Xie, Cheng Chen, Xiaobin Sun, Xudong Liang, Xiaohui Huang, Hanaa Abumarshoud, Johannes Herrnsdorf, Erdan Gu, Harald Haas, Martin D. Dawson. 10 Gbps wavelength division multiplexing using UV-A, UV-B, and UV-C micro-LEDs[J]. Photonics Research, 2022, 10(2): 516
    Download Citation