• Acta Optica Sinica
  • Vol. 37, Issue 9, 0914002 (2017)
Jingfeng Xiang1、2, Liguo Wang1, Lin Li1, Desheng Lü1, and Liang Liu1
Author Affiliations
  • 1 Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS201737.0914002 Cite this Article Set citation alerts
    Jingfeng Xiang, Liguo Wang, Lin Li, Desheng Lü, Liang Liu. Automatic Frequency Stabilization System of External Cavity Diode Laser Based on Digital Signal Processing Technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002 Copy Citation Text show less
    References

    [1] Talvitie H, Pietilainen A, Ludvigsen H et al. Passive frequency and intensity stabilization of extended-cavity diode lasers[J]. Review of Scientific Instruments, 68, 1-7(1997). http://scitation.aip.org/content/aip/journal/rsi/68/1/10.1063/1.1147810

    [2] Micalizio S, Godone A, Levi F et al. Pulsed optically pumped 87Rb vapor cell frequency standard: a multilevel approach [J]. Physical Review A, 79, 013403(2009). http://adsabs.harvard.edu/abs/2009PhRvA..79a3403M

    [3] Affolderbach C, Droz F, Mileti G. Experimental demonstration of a compact and high-performance laser-pumped rubidium gas cell atomic frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 55, 429-435(2006). http://ieeexplore.ieee.org/document/1608584

    [4] Zheng B C, Cheng H D, Meng Y L et al. Development of an integrating sphere cold atom clock[J]. Chinese Physics Letters, 30, 123701(2013). http://www.researchgate.net/publication/274627864_Development_of_an_Integrating_Sphere_Cold_Atom_Clock

    [5] Tian Xiao, Xu Qinfang, Yin Mojuan et al. Experiment study on optical lattice clock of strontium at NTSC[J]. Acta Optica Sinica, 35, s102001(2015).

    [6] Liu Peng, Cheng Huadong, Meng Yanling et al. Research on phase modulation of Ramsey fringes in integrating sphere cold atom clocks[J]. Chinese J Lasers, 43, 1112001(2016).

    [7] Allard F, Maksimovic I, Abgrall M et al. Automatic system to control the operation of an extended cavity diode laser[J]. Review of Scientific Instruments, 75, 54-58(2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5011440

    [8] Lévèque T, Faure B, Esnault F X et al. PHARAO laser source flight model: design and performances[J]. Review of Scientific Instruments, 86, 033104(2015). http://europepmc.org/abstract/MED/25832208

    [9] Dong L, Yin W B, Ma W G et al. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line[J]. Measurement Science & Technology, 18, 1447-1452(2007). http://www.iop.org/EJ/abstract/0957-0233/18/5/033

    [10] Zhang Yin, Wang Qing. Research of automatic frequency stability diode laser[J]. Chinese J Lasers, 41, 0602001(2014).

    [11] Yu Zhijian, Xue Wenxiang, Zhao Wenyu et al. Automatic frequency stabilization system of DFB diode laser for POP Rb atomic clock[J]. Journal of Time and Frequency, 38, 129-138(2015).

    [12] Wei Fang, Chen Dijun, Dong Zuoren et al. Full digital DFB diode laser system with frequency stabilization based on DSP[J]. Journal of Optelectronics·lasers, 21, 40-42(2010).

    [13] He Zhigang, Deng Lunhua, Wang Guishi et al. Nd∶YAG laser frequency stabilization technology based on digital feedback control[J]. Chinese J Lasers, 39, 0702009(2012).

    [14] Sun Yanguang, Dong Zuoren, Chen Dijun et al. Laser methane remote sensing technology based on digital feedback frequency stabilization[J]. Chinese J Lasers, 40, 0408002(2013).

    [15] de Vegte J V[M]. Fundamentals of digital signal processing, 80(2009).

    Jingfeng Xiang, Liguo Wang, Lin Li, Desheng Lü, Liang Liu. Automatic Frequency Stabilization System of External Cavity Diode Laser Based on Digital Signal Processing Technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002
    Download Citation