• Laser & Optoelectronics Progress
  • Vol. 54, Issue 11, 110201 (2017)
Wen Xin, Zhang Yuyi, and Qian Jing
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.110201 Cite this Article Set citation alerts
    Wen Xin, Zhang Yuyi, Qian Jing. Lensing Effect Induced by a Bose-Einstein Condensate Passing a Gaussian Laser Field[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110201 Copy Citation Text show less
    References

    [1] Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms[J]. Physical Review Letters, 1995, 75(22): 3969-3973.

    [2] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269(5221): 198-201.

    [3] Andrews M R, Townsend C G, Miesner H J, et al. Observation of interference between two Bose condensates[J]. Science, 1997, 275(5300): 637-641.

    [4] Fouda M F, Fang R, Ketterson J B, et al. Generation of arbitrary lithographic patterns using Bose-Einstein-condensate interferometry[J]. Physical Review A, 2016, 94(6): 063644.

    [5] Ovchinnikov Y B, Müller J H, Doery M R, et al. Diffraction of a released Bose-Einstein condensate by a pulsed standing light wave[J]. Physical Review Letters, 1999, 83(2): 284-287.

    [6] Ishkhanyan A M. Diffraction of atoms by a standing wave at Gaussian initial momentum distribution of amplitudes[J]. Physical Review A, 2000, 61(6): 063611.

    [7] Zhang Baowu, Yao Luyu, Chen Jun, et al. Effects of non-collimation of Gaussian laser on laser-focused Cr atom deposition[J]. Acta Optica Sinica, 2015, 35(6): 0602001.

    [8] Oberthaler M K, Pfau T. One-, two- and three-dimensional nanostructures with atom lithography[J]. Journal of Physics: Condensed Matter, 2003, 15(6): R233-R255.

    [9] Balykin V I, Melentiev P N. Nanolithography with atom optics[J]. Nanotechnologies in Russia, 2009, 4(7/8): 425-447.

    [10] Wang Z, Millet L, Mir M, et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 2011, 19(2): 1016-1026.

    [11] Yong Y K, Mohemani S O R. Design of an inertially counterbalanced Z- nanopositioner for high-speed atomic force microscopy[J]. IEEE Transactions on Nanotechnology, 2013, 12(2): 137-145.

    [12] Sebby-Strabley J, Anderlini M, Jessen P S, et al. Lattice of double wells for manipulating pairs of cold atoms[J]. Physical Review A, 2006, 73(3): 033605.

    [13] Wang Qi, Ge Yan, Liu Lianzhen, et al. Quantum coherent control in hybrid atom optomechanical systems[J]. Acta Optica Sinica, 2016, 36(11): 1102001.

    [14] Han H, Beyer A, Belz J, et al. Quantitative atomic resolution at interfaces: subtraction of the background in STEM images with the example of (Ga, In) P/GaAs structures[J]. Journal of Applied Physics, 2017, 121(2): 025301.

    [15] Treutlein P, Hommelhoff P, Steinmetz T, et al. Coherence in microchip traps[J]. Physical Review Letters, 2004, 92(20): 203005.

    [16] Bjorkholm J E, Freeman R R, Ashkin A, et al. Observation of focusing of neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical Review Letters, 1978, 41(20): 1361-1364.

    [17] Pearson D B, Freeman R R, Bjorkholm J E, et al. Focusing and defocusing of neutral atomic beams using resonance-radiation pressure[J]. Applied Physics Letters, 1980, 36(1): 99-101.

    [18] Khaykovich L, Davidson N. Adiabatic focusing of cold atoms in a blue-detuned laser standing wave[J]. Applied Physics B, 2000, 70(5): 683-688.

    [19] Han J, Vogt T, Manjappa M, et al. Lensing effect of electromagnetically induced transparency involving a Rydberg state[J]. Physical Review A, 2015, 92(6): 063824.

    [20] Zhou S, Duan Z, Qian J, et al. Cold atomic clouds and Bose-Einstein condensates passing through a Gaussian beam[J]. Physical Review A, 2009, 80(3): 033411.

    [21] Gao Deying, Xia Yunjie. Quantum correlation dynamics of motive atoms in cavity quantum electrodynamics[J]. Laser & Optoelectronics Progress, 2015, 52(8): 082701.

    [22] Kandes M C. Modeling the effects of inertial forces on Bose-Einstein condensates in rotating frames of reference[D]. Los Angeles: Claremont Graduate University, 2015:1-9.

    [23] Wang Shunjin. Mean field theory for Boson systems: sympathetic cooling and soliton excitations of Bose-Einstein condensate[J]. Nuclear Physics Review, 2004, 21(2): 99-103.

    [24] Meystre P. Atom optics[M]. New York: Springer Science & Business Media, 2001: 43-56.

    [25] Roberts J L, Claussen N R, Cornish S L, et al. Controlled collapse of a Bose-Einstein condensate[J]. Physical Review Letters, 2001, 86(19): 4211-4214.

    [26] Abdullaev F K, Caputo J G, Kraenkel R A, et al. Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length[J]. Physical Review A, 2003, 67(1): 013605.

    [27] Cornish S L, Thompson S T, Wieman C E. Formation of bright matter-wave solitons during the collapse of attractive Bose-Einstein condensates[J]. Physical Review Letters, 2006, 96(17): 170401.

    [28] Weber T, Herbig J, Mark M, et al. Bose-Einstein condensation of cesium[J]. Science, 2003, 299(5604): 232-235.

    [29] Pethick C J, Smith H. Bose-Einstein condensation in dilute gases[M]. Cambridge: Cambridge University Press, 2002: 159-162.

    [30] Liu Hong, Wei Jiayu, Lou Senyue, et al. Bright soliton solution in 1D Tonks-Girardeau gas[J]. Acta Physica Sinica, 2008, 57(3): 1343-1346.

    [31] Duan Zhenglu. Nonlinear quantum effect of the coherent matter wave[D]. Shanghai: East China Normal University, 2010:98-99.

    [32] Strecker K E, Partridge G B, Truscott A G, et al. Formation and propagation of matter-wave soliton trains[J]. Nature, 2002, 417(6885): 150-153.

    Wen Xin, Zhang Yuyi, Qian Jing. Lensing Effect Induced by a Bose-Einstein Condensate Passing a Gaussian Laser Field[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110201
    Download Citation