• Photonics Research
  • Vol. 7, Issue 10, 1112 (2019)
C. E. Garcia-Ortiz1,*, R. Cortes1, J. E. Gómez-Correa1, E. Pisano1,2..., J. Fiutowski3, D. A. Garcia-Ortiz4, V. Ruiz-Cortes5, H.-G. Rubahn3 and V. Coello1|Show fewer author(s)
Author Affiliations
  • 1CICESE, Unidad Monterrey, Alianza Centro 504, PIIT, Apodaca, NL 66629, Mexico
  • 2Cátedras CONACYT—Centro de Investigaciones en Óptica, Alianza Centro 504, PIIT, Apodaca, NL 66629, Mexico
  • 3Mads Clausen Institute, University of Southern Denmark, NanoSYD, Alsion 2 DK6400, Sønderborg, Denmark
  • 4CICFIM–UANL, Av Universidad S/N, San Nicolas de los Garza, NL 66450, Mexico
  • 5Departamento de Óptica, CICESE, Ensenada, BC 22860, Mexico
  • show less
    DOI: 10.1364/PRJ.7.001112 Cite this Article Set citation alerts
    C. E. Garcia-Ortiz, R. Cortes, J. E. Gómez-Correa, E. Pisano, J. Fiutowski, D. A. Garcia-Ortiz, V. Ruiz-Cortes, H.-G. Rubahn, V. Coello, "Plasmonic metasurface Luneburg lens," Photonics Res. 7, 1112 (2019) Copy Citation Text show less
    References

    [1] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [2] H. Chen, C. T. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 9, 387-396(2010).

    [3] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [4] W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, D. R. Smith. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces. Appl. Phys. Lett., 92, 264101(2008).

    [5] H. Chen, C. T. Chan. Transformation media that rotate electromagnetic fields. Appl. Phys. Lett., 90, 241105(2007).

    [6] M. Yan, W. Yan, M. Qiu. Cylindrical superlens by a coordinate transformation. Phys. Rev. B, 78, 125113(2008).

    [7] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann. Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett., 99, 183901(2007).

    [8] H. Ma, S. Qu, Z. Xu, J. Wang. General method for designing wave shape transformers. Opt. Express, 16, 22072-22082(2008).

    [9] Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, T. S. Mayer. Flat transformation optics graded-index (TO-GRIN) lenses. 6th European Conference on Antennas and Propagation (EUCAP)(2012).

    [10] C. T. Tai. Maxwell fish-eye treated by Maxwell equations. Nature, 182, 1600-1601(1958).

    [11] J. E. Eaton. On spherically symmetric lenses. IRE Trans. Antennas Propag., PGAP-4, 66-71(1952).

    [12] R. Luneburg. Mathematical Theory of Optics(1944).

    [13] J. E. Gómez-Correa, S. E. Balderas-Mata, B. K. Pierscionek, S. Chávez-Cerda. Composite modified Luneburg model of human eye lens. Opt. Lett., 40, 3990-3993(2015).

    [14] J. E. Gómez-Correa, V. Coello, A. Garza-Rivera, N. P. Puente, S. Chávez-Cerda. Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens. Appl. Opt., 55, 2002-2010(2016).

    [15] A. Demetriadou, Y. Hao. Slim Luneburg lens for antenna applications. Opt. Express, 19, 19925-19934(2011).

    [16] C. H. Walter. Surface-wave Luneberg lens antennas. IRE Trans. Antennas Propag., 8, 508-515(1960).

    [17] Y. L. Loo, Y. Yang, N. Wang, Y. G. Ma, C. K. Ong. Broadband microwave Luneburg lens made of gradient index metamaterials. J. Opt. Soc. Am. A, 29, 426-430(2012).

    [18] Y. J. Park, W. Wiesbeck. Angular independency of a parallel-plate Luneburg lens with hexagonal lattice and circular metal posts. IEEE Antennas Wireless Propag. Lett., 1, 128-130(2002).

    [19] J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, A. P. Hibbins. Thin metamaterial Luneburg lens for surface waves. Phys. Rev. B, 87, 125137(2013).

    [20] T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, X. Zhang. Plasmonic Luneburg and Eaton lenses. Nat. Nanotechnol., 6, 151-155(2011).

    [21] A. Maradudin, J. R. Sambles, W. L. Barnes. Modern Plasmonics(2014).

    [22] Z. Han, C. E. Garcia-Ortiz, I. P. Radko, S. I. Bozhevolnyi. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides. Opt. Lett., 38, 875-877(2013).

    [23] A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, A. V. Lavrinenko. Direct characterization of plasmonic slot waveguides and nanocouplers. Nano Lett., 14, 3925-3929(2014).

    [24] Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang. Focusing surface plasmons with a plasmonic lens. Nano Lett., 5, 1726-1729(2005).

    [25] T. Kosako, Y. Kadoya, H. F. Hofmann. Directional control of light by a nano-optical Yagi-Uda antenna. Nat. Photonics, 4, 312-315(2010).

    [26] G. Barbillon. Plasmonics and its applications. Materials, 12, 1502(2019).

    [27] H. Kim, B. Lee. Diffractive slit patterns for focusing surface plasmon polaritons. Opt. Express, 16, 8969-8980(2008).

    [28] W. Chen, R. L. Nelson, Q. Zhan. Geometrical phase and surface plasmon focusing with azimuthal polarization. Opt. Lett., 37, 581-583(2012).

    [29] A. Yanai, U. Levy. Plasmonic focusing with a coaxial structure illuminated by radially polarized light. Opt. Express, 17, 924-932(2009).

    [30] G. M. Lerman, A. Yanai, U. Levy. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett., 9, 2139-2143(2009).

    [31] L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball. Subwavelength focusing and guiding of surface plasmons. Nano Lett., 5, 1399-1402(2005).

    [32] J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, S. Liu. Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light. Appl. Phys. Lett., 106, 013116(2015).

    [33] E. Ogut, C. Yanik, I. I. Kaya, C. Ow-Yang, K. Sendur. Focusing short-wavelength surface plasmons by a plasmonic mirror. Opt. Lett., 43, 2208-2211(2018).

    [34] . NANO PMMA and Copolymer(2001).

    [35] S. Park, G. Lee, S. H. Song, C. H. Oh, P. S. Kim. Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings. Opt. Lett., 28, 1870-1872(2003).

    [36] S. Li, Z. Zhang, J. Wang, X. He. Design of conformal lens by drilling holes materials using quasi-conformal transformation optics. Opt. Express, 22, 25455-25465(2014).

    [37] S. Maier. Plasmonics: Fundamentals and Applications(2007).

    [38] A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, T. W. Ebbesen. Surface plasmon leakage radiation microscopy at the diffraction limit. Opt. Express, 19, 25749-25762(2011).

    [39] C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths. Appl. Phys. B, 107, 401-407(2012).

    [40] A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, J. R. Krenn. Leakage radiation microscopy of surface plasmon polaritons. Mater. Sci. Eng. B, 149, 220-229(2008).

    [41] C. E. Garcia-Ortiz, E. Pisano, V. Coello. Description and characterization of plasmonic Gaussian beams. J. Opt., 19, 085001(2017).

    [42] T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, C. Reinhardt. Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons. ACS Photon., 4, 905-908(2017).

    CLP Journals

    [1] Lei Zhang, Lin Wang, Yanqing Wu, Renzhong Tai, "Plasmonic Luneburg lens and plasmonic nano-coupler," Chin. Opt. Lett. 18, 092401 (2020)

    C. E. Garcia-Ortiz, R. Cortes, J. E. Gómez-Correa, E. Pisano, J. Fiutowski, D. A. Garcia-Ortiz, V. Ruiz-Cortes, H.-G. Rubahn, V. Coello, "Plasmonic metasurface Luneburg lens," Photonics Res. 7, 1112 (2019)
    Download Citation