• Journal of Semiconductors
  • Vol. 40, Issue 6, 062004 (2019)
Pengxiang Bai, Shiying Guo, Shengli Zhang, Hengze Qu, Wenhan Zhou, and Haibo Zeng
Author Affiliations
  • MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.1088/1674-4926/40/6/062004 Cite this Article
    Pengxiang Bai, Shiying Guo, Shengli Zhang, Hengze Qu, Wenhan Zhou, Haibo Zeng. Electronic band structures and optical properties of atomically thin AuSe: first-principle calculations[J]. Journal of Semiconductors, 2019, 40(6): 062004 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [2] K F Mak, C Lee, J Hone et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 105, 136805(2010).

    [3] B Radisavljevic, A Radenovic, J Brivio et al. Single-layer MoS2 transistors. Nat Nanotechnol, 6, 147(2011).

    [4] Q H Wang, K Kalantar-Zadeh, A Kis et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 7, 699(2012).

    [5] Y Zhang, J Ye, Y Matsuhashi et al. Ambipolar MoS2 thin flake transistors. Nano Lett, 12, 1136(2012).

    [6] K F Mak, J Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 10, 216(2016).

    [7] C Tan, H Zhang. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev, 44, 2713(2015).

    [8] W S Yun, S W Han, S C Hong et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B, 85, 033305(2012).

    [9] M Sajjad, N Singh, U Schwingenschlögl. Strongly bound excitons in monolayer PtS2 and PtSe2. Appl Phys Lett, 112, 043101(2018).

    [10] Y Wang, L Li, W Yao et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett, 15, 4013(2015).

    [11] C Yim, K Lee, N McEvoy et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano, 10, 9550(2016).

    [12] K Zhang, M Yan, H Zhang et al. Experimental evidence for type-II Dirac semimetal in PtSe2. Phys Rev B, 96, 125102(2017).

    [13] J F Sun, H L Shi, T Siegrist et al. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl Phys Lett, 107, 153902(2015).

    [14] Y Wang, Y Li, Z Chen. Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2 monolayer. J Mater Chem C, 3, 9603(2015).

    [15] Q Wu, W W Xu, B Qu et al. Au6S2 monolayer sheets: metallic and semiconducting polymorphs. Mater Horiz, 4, 1085(2017).

    [16] R Peng, Y Ma, Z He et al. Single-layer Ag2S: A two-dimensional bi-directional auxetic semiconductor. Nano Lett, 19, 1227(2019).

    [17] L F E Machogo, P Tetyana, R Sithole et al. Unravelling the structural properties of mixed-valence α- and β-AuSe nanostructures using XRD, TEM and XPS. Appl Surf Sci, 456, 973(2018).

    [18] S J Clark, M D Segall, C J Pickard et al. First principles methods using CASTEP. Z Kristallogr, 220, 567(2005).

    [19] G Kresse, J Furthümller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169(1996).

    [20] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [21] J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 118, 8207(2003).

    [22] J Paier, M Marsman, K Hummer et al. Screened hybrid density functionals applied to solids. J Chem Phys, 124, 154709(2006).

    [23] H Liu, A T Neal, Z Zhu et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033(2014).

    [24] L Li, Y Yu, G J Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [25] J Qiao, X Kong, Z X Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 5, 4475(2014).

    [26] S Zhang, S Guo, Z Chen et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev, 47, 982(2018).

    [27] S Zhang, M Xie, F Li et al. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew Chem Int Ed Engl, 55, 1666(2016).

    [28] S Zhang, Z Yan, Y Li et al. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed Engl, 54, 3112(2015).

    [29] P Koskinen, S Malola, H Hakkinen. Self-passivating edge reconstructions of graphene. Phys Rev Lett, 101, 115502(2008).

    [30] H Şahin, S Cahangirov, M Topsakal et al. Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations. Phys Rev B, 80, 155453(2009).

    [31] M Topsakal, E Aktürk, S Ciraci. First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys Rev B, 79, 115442(2009).

    [32] B Silvi, A Savin. Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 317, 683(1994).

    [33] J Li, Z Y Fan, R Dahal et al. 200 nm deep ultraviolet photodetectors based on AlN. Appl Phys Lett, 89, 213510(2006).

    [34] M Sajjad, W M Jadwisienczak, P Feng. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector. Nanoscale, 6, 4577(2014).

    Pengxiang Bai, Shiying Guo, Shengli Zhang, Hengze Qu, Wenhan Zhou, Haibo Zeng. Electronic band structures and optical properties of atomically thin AuSe: first-principle calculations[J]. Journal of Semiconductors, 2019, 40(6): 062004
    Download Citation