• Matter and Radiation at Extremes
  • Vol. 5, Issue 4, 045403 (2020)
V. A. Gribkov1、2, I. V. Borovitskaya1, E. V. Demina1, E. E. Kazilin1, S. V. Latyshev1、3, S. A. Maslyaev1, V. N. Pimenov1、2, T. Laas2、4, M. Paduch2、5, and S. V. Rogozhkin6
Author Affiliations
  • 1A.A. Baikov Institute of Metallurgy and Material Science, RAS, Leninsky Prospect 49, 119991 Moscow, Russian Federation
  • 2The International Centre for Dense Magnetized Plasmas, ul. Hery 23, 01-497 Warsaw, Poland
  • 3Moscow Technical University of Communications and Informatics, ul. Aviamotornaya 8а, 111024 Moscow, Russian Federation
  • 4School of Natural Sciences and Health, Tallinn University, Narva Road 25, Tallinn 10120, Estonia
  • 5The Institute of Plasma Physics and Laser Microfusion, ul. Hery 23, 01-497 Warsaw, Poland
  • 6A.I. Alikhanov Institute for Theoretical and Experimental Physics of NRC “Kurchatov Institute”, ul. Bolshaya Cheremushkinskaya 25, 117218 Moscow, Russian Federation
  • show less
    DOI: 10.1063/5.0005852 Cite this Article
    V. A. Gribkov, I. V. Borovitskaya, E. V. Demina, E. E. Kazilin, S. V. Latyshev, S. A. Maslyaev, V. N. Pimenov, T. Laas, M. Paduch, S. V. Rogozhkin. Application of dense plasma focus devices and lasers in the radiation material sciences for the goals of inertial fusion beyond ignition[J]. Matter and Radiation at Extremes, 2020, 5(4): 045403 Copy Citation Text show less
    References

    [1]

    [2] A. Kirschner, K. Schmid, J. W. Coenen, S. Brezinsek, T. Schwarz-Selinger et al. Nucl. Fusion, 57, 116041(2017).

    [3] A. V. Medvedev, V. A. Makhlaj, J. Linke, I. E. Garkusha, I. Landman et al. Performance of deformed tungsten under ELM-like plasma exposures in QSPA Kh-50. J. Nucl. Mater., 415, S65-S69(2011).

    [4] D. Kovalenko, V. Podkovyrov, A. Zhitlukhin, N. Klimov. Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA. J. Nucl. Mater., 390-391, 721-726(2009).

    [5] M. A. Van Den Berg, P. Fiflis, G. G. Van Eden, S. Brons, T. W. Morgan et al. Performance of the lithium metal infused trenches in the magnum PSI linear plasma simulator. Nucl. Fusion, 55, 113004(2015).

    [6] L. Winfrey, J. Gilligan, N. Almousa, M. Bourham. Radiative heat transport through vapor plasma for fusion heat flux studies and electrothermal plasma sources applications. J. Nucl. Energy Sci. Power Generat. Technol., 3, 1000116(2014).

    [7] S. Keusemann, T. Hirai, Th. Loewenhoff, J. Linke, G. Pintsuk et al. Experimental simulation of edge localized modes using focused electron beams—Features of a circular load pattern. J. Nucl. Mater., 415, S51-S54(2011).

    [8] E. V. Morozov, A. S. Demin, V. N. Pimenov, V. A. Gribkov, V. V. Roshchupkin et al. Features of damage and structural changes in the surface layer of tungsten under the pulsed action of laser radiation, ion and plasma fluxes. Phys. Chem. Mater. Treatment., 4, 18(2017).

    [9]

    [10]

    [11] T. J. Tanaka, G. A. Rochau, R. R. Peterson, C. L. Olson. Testing IFE materials on Z. J. Nucl. Mater., 347, 244-254(2005).

    [12] B. K. Bell, R. P. Abbott, R. C. Schmitt, J. F. Latkowski. Effect of multi-shot X-ray exposures in IFE armor materials. J. Nucl. Mater., 347, 255-265(2005).

    [13] A. M. Stoneham, J. R. Matthews, I. J. Ford. Innovative materials for fusion power plant structures: Separating functions. J. Phys.: Condens. Matter, 16, s2597-s2621(2004).

    [14] I. S. Grigoriev, E. Z. Meilikhov, A. A. Radzig. Handbook of Physical Quantities, 1548(1997).

    [15] T. Renk. Long-term exposure of tungsten and other materials to intense pulsed ion beams, beam applications and initiatives(2005).

    [16] H. Shiraishi, M. Fujitsuka, T. Tanabe, H. Shinno. Thermal shock experiments for carbon materials by electron beams. J. Nucl. Mater., 179-181, 189-192(1991).

    [17] M. A. Orlova, O. A. Kost, V. A. Gribkov, A. V. Egorov, I. G. Gazaryan et al. Enzyme activation and inactivation induced by low doses of irradiation. Appl. Biochem. Biotechnol., 88, 243-255(2000).

    [18] D. T. Casey, D. A. Callahan, O. A. Troshina, P. M. Celliers, C. Cerjan et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).

    [19] H. Chuaqui, H. Bruzzone, A. Bernard, V. Gribkov, P. Choi et al. Scientific status of plasma focus research. J. Moscow Phys. Soc., 8, 93-170(1998).

    [20] V. A. Gribkov, M. Scholz, A. Dubrovskij, L. Karpinski, P. Strzyzewski. New efficient low-energy dense plasma focus in IPPLM. Czech J. Phys., 54, 191-197(2004).

    [21] V. A. Gribkov, F. Mezzetti, M. Scholz, R. Miklaszewski. PF-1000 device. Nukleonika, 45, 155-158(2000).

    [22] V. A. Gribkov, I. V. Borovitskaya, S. A. Maslyaev, E. V. Morozov, A. S. Demin et al. The Vikhr plasma focus device for diagnosing the radiation-thermal resistance of materials intended for thermonuclear energy and aerospace engineering. Instrum. Exp. Techn., 63, 68-76(2020).

    [23] T. Laas, Ü. Ugaste, A. Ainsaar, J. Priimets, V. Shirokova et al. Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots. J. Nucl. Mater., 435, 181-188(2013).

    [24] E. Zielinska, E. V. Demina, M. Paduch, A. S. Demin, V. A. Gribkov et al. Comparative analysis of damageability produced by powerful pulsed ion/plasma streams and laser radiation on the plasma-facing W samples. Radiat. Phys. Chem., 150, 20-29(2018).

    [25] E. E. Kazilin, A. S. Demin, N. A. Epifanov, S. V. Latyshev, V. A. Gribkov et al. Damageability of the Al2O3 oxide coating on the aluminum substrate by pulsed beam plasma and laser radiation. Inorg. Mater. Appl. Res., 10, 339-346(2019).

    [26] T. Laas, S. Tõkke, J. Paju, J. Priimets, K. Laas et al. Behavior of tungsten alloy with iron and nickel under repeated high temperature plasma pulses. Fusion Eng. Des., 151, 111408(2020).

    [27] E. V. Demina, V. A. Gribkov, V. N. Pimenov, V. P. Sirotinkin, M. D. Prusakova et al. Behavior of the 16%Cr ODS ferritic steel intended for nuclear fusion power industry after tests in the conditions of irradiation in the Dense Plasma Focus facility PF-1000U. J. Phys.: Conf. Ser., 1347, 012069(2019).

    [28] E. E. Kazilin, S. V. Latyshev, E. V. Demina, S. A. Maslyaev, V. A. Gribkov et al. Testing of materials perspective for nuclear fusion reactors with inertial plasma confinement by Plasma Focus and laser devices. J. Phys.: Conf. Ser., 1347, 012071(2019).

    [29] R. J. M. Konings, G. Pintsuk. Tungsten as a plasma-facing material. Comprehensive Nuclear Materials(2012).

    [30] Yu. P. Raizer, Ya. B. Zel’dovich. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(1966).

    [31] V. A. Gribkov, S. A. Maslyaev, V. N. Pimenov, S. V. Latyshev. Numerical modeling of interaction of pulsed streams of energy with material in the dense plasma focus devices. Phys. Chem. Mater. Treatment., 6, 16-22(2011).

    [32] S. V. Latyshev, V. A. Gribkov, V. N. Pimenov, S. A. Maslyaev, M. Paduch et al. Generation of shock waves in materials science experiments with dense plasma focus device. Inorg. Mater.: Appl. Res., 6, 91-95(2015).

    [33] Z. Zielinska. Advanced Materials for Future Nuclear Plants, 1-29(2007).

    [34] K. L. Murty, I. Charit. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater., 383, 189-195(2008).

    [35] C. R. F. Azevedo. Selection of fuel cladding material for nuclear fission reactors. Eng. Failure Anal., 18, 1943-1962(2011).

    [36] P. Yvon, F. Carré. Structural materials challenges for advanced reactor systems. J. Nucl. Mater., 385, 217-222(2009).

    [37] S. Ukai, M. Fujiwara. Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater., 307-311, 749-757(2002).

    [38] H. S. Cho, R. Kasada, H. Kishimoto, N. Toda, K. Yutani et al. Pre- and post-deformation microstructures of oxide dispersion strengthened ferritic steels. J. Nucl. Mater., 367-370, 222-228(2007).

    [39] A. Möslang, P. Schlossmacher, R. Kimura, M. Klimenkov, M. Schirra. Mechanical and microstructural properties of a hipped RAFM ODS-steel. J. Nucl. Mater., 307-311, 769-772(2002).

    [40] P. J. Maziasz, R. L. Klueh, I. S. Kim, D. T. Hoelzer, L. Heatherly et al. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel. J. Nucl. Mater., 307-311, 773-777(2002).

    [41] R. K. Nanstad, M. A. Sokolov, D. A. McClintock, D. T. Hoelzer. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J. Nucl. Mater., 392, 353-359(2009).

    [42] N. V. Luzginova, J. B. J. Hegeman, J. Rensman, P. Pierick. Irradiation response of ODS Eurofer97 steel. J. Nucl. Mater., 428, 192-196(2012).

    [43] S. A. Maslyaev. Thermal effects during pulsed irradiation of materials in the plasma focus device. Adv. Mater., 5, 47-55(2007).

    [44] G. G. Bondarenko. Radiation Physics, Structure and Strength of Solids(2016).

    [45] L. P. Putilov, V. I. Tsidilkovski, A. N. Varaksin. Defect formation and water incorporation in Y2O3. J. Phys. Chem. Solids, 72, 1090-1095(2011).

    [46] L. I. Larikov, V. I. Isaichev. Diffusion in Metals and Alloys, 510(1989).

    [47] A. A. Vostryakov, I. S. Sipatov, E. A. Pastukhov, N. I. Sidorov. Diffusion in Ta, Nb, and Zr melts. Butlerov Commun., 30, 20-24(2012).

    [48] V. A. Gribkov, V. N. Pimenov, S. V. Latyshev, S. A. Maslyaev. Numerical simulation of the interaction of pulsed energy fluxes with material in Plasma focus device. Phys. Chem. Mater. Treatment., 6, 16-22(2011).

    V. A. Gribkov, I. V. Borovitskaya, E. V. Demina, E. E. Kazilin, S. V. Latyshev, S. A. Maslyaev, V. N. Pimenov, T. Laas, M. Paduch, S. V. Rogozhkin. Application of dense plasma focus devices and lasers in the radiation material sciences for the goals of inertial fusion beyond ignition[J]. Matter and Radiation at Extremes, 2020, 5(4): 045403
    Download Citation