• Acta Optica Sinica
  • Vol. 42, Issue 9, 0908001 (2022)
Yongxing Yang1、2、*, Xinrui Wang1、2, Beibei Chen1、2, Hengrui Guan1、2, Jinpeng Li1、2、3、**, Jingyuan Zhang1、2, Xinhua Lai4, and Jinbiao Zhao3
Author Affiliations
  • 1University of Science and Technology of China, Hefei 230022, Anhui, China
  • 2Nanjing Research Center of Astronomical Instruments, University of Science and Technology of China, Nanjing 210042, Jiangsu, China
  • 3Nanjing Astronomical Instruments Co., Ltd., Chinese Academy of Sciences, Nanjing 210042, Jiangsu, China
  • 4Mathematics and Science College of Shanghai Normal University, Shanghai 200234
  • show less
    DOI: 10.3788/AOS202242.0908001 Cite this Article Set citation alerts
    Yongxing Yang, Xinrui Wang, Beibei Chen, Hengrui Guan, Jinpeng Li, Jingyuan Zhang, Xinhua Lai, Jinbiao Zhao. High-Temperature Material Spectral Emissivity Measurement Technology Based on 800 mm Semi-Ellipsoidal Reflector[J]. Acta Optica Sinica, 2022, 42(9): 0908001 Copy Citation Text show less
    Layout of measuring devices. (a) Devices for measuring spectral emissivity of high-temperature materials; (b) 800 nm semi-ellipsoidal mirror
    Fig. 1. Layout of measuring devices. (a) Devices for measuring spectral emissivity of high-temperature materials; (b) 800 nm semi-ellipsoidal mirror
    Simulated ray-tracing diagrams. (a) 30°reflectivity measurement mode; (b) 60°reflectivity measurement mode; (c) 90°reflectivity measurement mode; (d) normal transmittance measurement mode
    Fig. 2. Simulated ray-tracing diagrams. (a) 30°reflectivity measurement mode; (b) 60°reflectivity measurement mode; (c) 90°reflectivity measurement mode; (d) normal transmittance measurement mode
    Simulation result curves. (a) 30° reflectivity measurement curves; (b) 60° reflectivity measurement error curves; (c) 90° reflectivity measurement curves; (d) 30° reflectivity measurement error curves; (e) 60° reflectivity measurement curves; (f) 90° reflectivity measurement error curves
    Fig. 3. Simulation result curves. (a) 30° reflectivity measurement curves; (b) 60° reflectivity measurement error curves; (c) 90° reflectivity measurement curves; (d) 30° reflectivity measurement error curves; (e) 60° reflectivity measurement curves; (f) 90° reflectivity measurement error curves
    90° normal transmittance curves. (a) Measured value curves; (b) standard value curves
    Fig. 4. 90° normal transmittance curves. (a) Measured value curves; (b) standard value curves
    Transmittance error curves of AlN
    Fig. 5. Transmittance error curves of AlN
    Spectral emissivity and reflectivity of super black alloy material. (a) Emissivity; (b) reflectivity
    Fig. 6. Spectral emissivity and reflectivity of super black alloy material. (a) Emissivity; (b) reflectivity
    Actual measurement result curves. (a) Spectral emissivity curves of grass green sample; (b) spectral reflectivity curves of grass green sample; (c) relationship between transmittance of translucent material and wavelength; (d) standard deviation diagram of transmittance of translucent material
    Fig. 7. Actual measurement result curves. (a) Spectral emissivity curves of grass green sample; (b) spectral reflectivity curves of grass green sample; (c) relationship between transmittance of translucent material and wavelength; (d) standard deviation diagram of transmittance of translucent material
    Measurement results for alloy material. (a) Emissivity; (b) reflectivity
    Fig. 8. Measurement results for alloy material. (a) Emissivity; (b) reflectivity
    Physical diagrams of alloy material. (a) Physical diagram of alloy material at medium-low temperature; (b) physical diagram of alloy material at high temperature
    Fig. 9. Physical diagrams of alloy material. (a) Physical diagram of alloy material at medium-low temperature; (b) physical diagram of alloy material at high temperature
    Three-dimensional ray-tracing model diagrams. (a) Wireframe diagram of model; (b) physical diagram of model
    Fig. 10. Three-dimensional ray-tracing model diagrams. (a) Wireframe diagram of model; (b) physical diagram of model
    Two-dimensional irradiance distributions. (a) Irradiance distribution without structural factors; (b) irradiance distribution with structural factors
    Fig. 11. Two-dimensional irradiance distributions. (a) Irradiance distribution without structural factors; (b) irradiance distribution with structural factors
    ParameterDescription
    Length of ellipsoid major axis /mm800
    Length of ellipsoid minor axis /mm690
    Focal length /mm404.8
    Ellipsoid equationx24002+z2+y23452=1
    MaterialAluminum 7075
    Surface accuracy≤3λ@0.6328 μm
    Table 1. Parameters of semi-ellipsoidal mirror
    Model typeDescription
    Semi-ellipsoidal mirrorinner surfaceGold-plated film;reflectivity: 98.3%;ABg model: A=0.0001,B=0.0150, g=2
    Light source settingEmission type: blackbody;number of rays: 100000;angular distribution: Lambertian;temperature: 1000 K
    Off-axis mirrorGold-plated film;reflectivity: 99.9%;wavelength: 2--14 μm
    Sample surface modelSpecular/diffuse reflection
    Infrared spectrometerReceiving surface is setas a perfect absorber witha radius of 80 mm
    Table 2. Parameters of Ray tracing
    Yongxing Yang, Xinrui Wang, Beibei Chen, Hengrui Guan, Jinpeng Li, Jingyuan Zhang, Xinhua Lai, Jinbiao Zhao. High-Temperature Material Spectral Emissivity Measurement Technology Based on 800 mm Semi-Ellipsoidal Reflector[J]. Acta Optica Sinica, 2022, 42(9): 0908001
    Download Citation