• Laser & Optoelectronics Progress
  • Vol. 50, Issue 11, 110005 (2013)
Li Pan*, Li Jun, Liu Yuanzheng, Lei Xing, and Wang Jiliang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.110005 Cite this Article Set citation alerts
    Li Pan, Li Jun, Liu Yuanzheng, Lei Xing, Wang Jiliang. Current Status and Development of Navigation Sensors Based on Cold Atoms[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110005 Copy Citation Text show less
    References

    [1] M Boshier, D Berkeland, T R Govindan, et al.. Quantum Technology and Its Applications[R]. Los Alamos: Los Alamos National Laboratory, 2010. 8-10.

    [2] A Clairon, C Salomon, S Guellati, et al.. Ramsey resonance in a Zacharias fountain[J]. Europhys Lett, 1991, 16(2): 165-170.

    [3] M Kasevich, E Riis, S Chu, et al.. RF spectroscopy in an atomic fountain[J]. Phys Rev Lett, 1989, 63(6): 612-615.

    [4] Zhai Zaocheng, Yang Peihong. Novel atomic clock and its development in China[J]. Laser & Optoelectronics Progress, 2009, 46(3): 21-31.

    [5] A Clairon, P Laurent, G Santarelli, et al.. A cesium fountain frequency standard: preliminary results[J]. IEEE Trans Instrumentation and Measurement, 1995, 44(2): 128-131.

    [6] S A Diddams, J C Bergquist, S R Jefferts, et al.. Standards of time and frequency at the outset of 21st century[J]. Science, 2004, 306(5700): 1318-1324.

    [7] Ch Salomon, N Dimarcq, M Abgrall, et al.. Cold atoms in space and atomic clocks: ACES[J]. Comptes Rendus De L Academie Des Sciences Serie Iv Physique Astrophysique, 2001, 2(9): 1313-1330.

    [8] T P Heavner, L W Hollberg, S R Jefferts, et al.. Characterization of a cold cesium source for PARCS: primary atomic reference clock in space[J]. IEEE Trans Instrumentation and Measurement, 2001, 50(2): 500-502.

    [9] H Schnatz, B Lipphardt, C Degenhardt, et al.. Optical frequency measurements using fs-comb generators[J]. IEEE Trans Instrumentation and Measurement, 2005, 54(2): 750-753.

    [10] L Hollberg, C W Oates, G Wilpers, et al.. Optical frequency/wavelength references[J]. J Phys B, 2005, 38(9): S469-S495.

    [11] H Katori. Spectroscopy of strontium atoms in the Lamb-Dicke confinement[C]// Proceedings of the 6th Symposium on Frequency Standards and Metrology, 2002. 323-330.

    [12] M Takamoto, F L Hong, R Higashi, et al.. An optical lattice clock[J]. Nature, 2005, 435(7040): 321-324.

    [13] A D Ludlow, T Zelevinsky, G K Campbell, et al.. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808.

    [14] P R Berman. Atom Interferometry[M]. San Diego: Academic Press, 1997.

    [15] E J Post. Sagnac effect[J]. Rev Mod Phys, 1967, 39(2): 475-493.

    [16] F Riehle, Th Kisters, A Witte, et al.. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer[J]. Phys Rev Lett, 1991, 67(2): 177-180.

    [17] T L Gustavson, A Landrangin, M A Kasevich. Rotation sensing with dual atom-interferometer Sagnac gyroscope[J]. Classical Quantum Gravity, 2000, 17(12): 2385-2398.

    [18] M A Kasevich. Atom Interferometry in an Atomic Fountain[D]. Stanford: Stanford University, 1992.

    [19] A Peters, K Y Chung, S Chu. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 1999, 400(6747): 849-852.

    [20] G M Tinoa, L Cacciapuotib, K Bongsc, et al.. Atom interferometers and optical atomic clocks: new quantum sensors for fundamental physics experiments in space[C]. Proceedings of the Third International Conference on Particle and Fundamental Physics in Space, 2006. 159-165.

    [21] Committee on Universal Radio Frequency System for Special Operations Forces, Standing Committee on Research, Development, Acquisition Options for U.S. Special Operations Command, National Research Council. Toward a Universal Radio Frequency System for Special Operations Forces[M]. Washington: National Academies Press, 2009.

    [22] D S Durfee, Y K Shaham, M A Kasevich. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Phys Rev Lett, 2006, 97(24): 240801.

    [23] B Canuel, F Leduc, D Holleville, et al.. Six-axis inertial sensor using cold-atom interferometry[J]. Phys Rev Lett, 2006, 97(1): 010402.

    [24] B Biedermann. Gravity Tests, Differential Accelerometry and Interleaved Clocks with Cold Atom Interferometers[D]. Stanford: Stanford University, 2007.

    [25] K Takase. Precision Rotation Rate Measurements with a Mobile Atom Interferometer[D]. Stanford: Stanford University, 2008.

    [26] T Müller, M Gilowski, M Zaiser, et al.. A compact dual atom interferometer gyroscope based on laser-cooled rubidium[J]. Eur Phys J D, 2009, 53(3): 273-281.

    [27] A Gauguet, B Canuel, T Lévèque, et al.. Characterization and limits of a cold-atom Sagnac interferometer[J]. Phys Rev A, 2009, 80(6): 063604.

    [28] R Folman, P Krüger, D Cassettari, et al.. Controlling cold atoms using nanofabricated surfaces: atom chips[J]. Phys Rev Lett, 2000, 84(20): 4749-4752.

    [29] S Knappe, P D D Schwindt, V Shah, et al.. A chip-scale atomic clock based on 87Rb with improved frequency stability[J]. Opt Express, 2005, 13(4): 1249-1253.

    [30] H Ott, F Fortagh, G Schlotterbeck, et al.. Bose-Einstein condensation in a surface microtrap[J]. Phys Rev Lett, 2001, 87(23): 230401.

    [31] S R Segal. Progress Towards an Ultracold Atomic Sagnac Gyroscope[D]. Boulder: University of Colorado at Boulder, 2010.

    [32] T Schumm, S Hofferberth, L M Andersson, et al.. Matter-wave interferometry in a double well on an atom chip[J]. Nature Physics, 2005, 57(1): 57-62.

    [33] P Treutlein, P Hommelhoff, T Steinmetz, et al.. Coherence in microchip traps[J]. Phys Rev Lett, 2004, 92(20): 3005-3008.

    [34] United States Air Force Chief Scientist (AF/ST). Report on Technology Horizons: a Vision for Air Force Science & Technology during 2010~2030[R]. United States Air Force, 2010. 79-90.

    [35] G Stern, B Battelier, R Geiger, et al.. Light-pulse atom interferometry in microgravity[J]. Eur Phy J D, 2009, 53(3): 353-357.

    [36] AOSense. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry[EB/OL]. (2011-09-08) [2013-02-02] https://ehb8.gsfc.nasa.gov/sbir/docs /public/recent_elections/SBIR_11_P1/SBIR_11_P1_115522/briefchart.pdf.

    [37] L C Suriano. Robust Technology to Augment or Replace the US Reliance on the Global Positioning System[R]. Montgomery: Air War College, Air University, 2011. 11.

    [38] DARPA. Precision Inertial Navigation Systems (PINS) [EB/OL]. (2010-12-30) [2013-02-02] http://www. darpa.mil/Our_Work/DSO/Programs/Precision_Inertial_Navigation_Systems_(PINS).aspx.

    [39] Qu Qiuzhi, Zhou Zichao, Wan Jinyin, et al.. Raman atomic fountain clock[J]. Acta Optica Sinica, 2008, 28(7): 1390-1394.

    [40] Li Runbing, Wang Jin, Zhan Mingsheng. New generation inertial navigation technology: cold atom gyroscope[J]. Gnss World of China, 2010, 35(4): 1-5.

    [41] Zhu Changxing, Feng Yanying, Ye Xiongying, et al.. The absolute rotation measurement of atom interferometer by phase modulation[J]. Acta Physica Sinica, 2008, 57(2): 808-815.

    [42] Wang Zhaoying, Wu Zhenjing, Lin Qiang. The relation between the atom interference fringe and the measurement precision of gravity[J]. Acta Optica Sinica, 2009, 29(12): 3541-3544.

    [43] Li Qiang, Yun Enxue, Gu Sihong. Study of coherent population trapping state with a four-level system[J]. Chinese J Lasers, 2009, 36(2): 351-355.

    [44] Li Qianyong, Lu Jiajia, Hu Haiyan, et al.. Laser frequency offset locking with optical pumping spectrum in D2 line of cesium[J]. Chinese J Lasers, 2010, 37(12): 2969-2974.

    [45] J C Fang, J Qin. Advances in atomic gyroscopes: a view from inertial navigation applications[J]. Sensors, 2012, 12(5): 6331-6346.

    [46] Li Jun, Lei Xing, Li Pan, et al.. Research progress and application of interferometric atom gyroscope[J]. Telecommunication Engineering, 2012, 52(7): 1216-1221.

    Li Pan, Li Jun, Liu Yuanzheng, Lei Xing, Wang Jiliang. Current Status and Development of Navigation Sensors Based on Cold Atoms[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110005
    Download Citation