• Opto-Electronic Engineering
  • Vol. 50, Issue 1, 220180 (2023)
Hao Peng1、2, Wanqi Wang1、2, Long Chen1、2, Xianrong Peng1、*, Jianlin Zhang1, Zhiyong Xu1, Yuxing Wei1, and Meihui Li1
Author Affiliations
  • 1Institute of Optics and Electronics, Chinese Academy of Science, Chengdu, Sichuan 610209, China
  • 2University of Chinese Academy of Science, Beijing 100049, China
  • show less
    DOI: 10.12086/oee.2023.220180 Cite this Article
    Hao Peng, Wanqi Wang, Long Chen, Xianrong Peng, Jianlin Zhang, Zhiyong Xu, Yuxing Wei, Meihui Li. Few-shot object detection via online inferential calibration[J]. Opto-Electronic Engineering, 2023, 50(1): 220180 Copy Citation Text show less
    References

    [2] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580587. https://doi.org/10.1109/CVPR.2014.81.

    [4] Girshick R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440–1448. https://doi.org/10.1109/ICCV.2015.169.

    [5] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015, 91–99.

    [6] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779–788. https://doi.org/10.1109/CVPR.2016.91.

    [7] Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//14th European Conference on Computer Vision, 2016: 21–37. https://doi.org/10.1007/978-3-319-46448-0_2.

    [8] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517–6525. https://doi.org/10.1109/CVPR.2017.690.

    [9] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 29993007. https://doi.org/10.1109/ICCV.2017.324.

    [10] Redmon J, Farhadi A. YOLOv3: an incremental improvement[Z]. arXiv: 1804.02767, 2018. https://arxiv.org/abs/1804.02767.

    [11] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[Z]. arXiv: 2004.10934, 2020. https://arxiv.org/abs/2004.10934.

    [13] Bennequin E. Meta-learning algorithms for few-shot computer vision[Z]. arXiv: 1909.13579, 2019. https://arxiv.org/abs/1909.13579.

    [14] Behl H S, Baydin A G, Torr P H S. Alpha MAML: adaptive model-agnostic meta-learning[Z]. arXiv: 1905.07435, 2019. https://arxiv.org/abs/1905.07435.

    [15] Yan X P, Chen Z L, Xu A N, et al. Meta R-CNN: towards general solver for instance-level low-shot learning[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 9576–9585. https://doi.org/10.1109/ICCV.2019.00967.

    [16] Wang Y Q, Yao Q M. Few-shot learning: a survey[Z]. arXiv: 1904.05046v1, 2019. https://arxiv.org/abs/1904.05046v1.

    [17] Duan Y, Andrychowicz M, Stadie B, et al. One-shot imitation learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 1087–1098.

    [18] Zhang W L, Wang Y X. Hallucination improves few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13003–13012. https://doi.org/10.1109/CVPR46437.2021.01281.

    [19] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision, 2017: 2242–2251. https://doi.org/10.1109/ICCV.2017.244.

    [20] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 3672–2680.

    [21] Li K, Zhang Y L, Li K P, et al. Adversarial feature hallucination networks for few-shot learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13467–13476. https://doi.org/10.1109/CVPR42600.2020.01348.

    [22] Hui B Y, Zhu P F, Hu Q H, et al. Self-attention relation network for few-shot learning[C]//2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), 2019: 198–203. https://doi.org/10.1109/ICMEW.2019.00041.

    [24] Schnfeld E, Ebrahimi S, Sinha S, et al. Generalized zero-and few-shot learning via aligned variational autoencoders[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 8239–8247. https://doi.org/10.1109/CVPR.2019.00844.

    [25] Sun B, Li B H, Cai S C, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7348–7358. https://doi.org/10.1109/CVPR46437.2021.00727.

    [26] Chen H, Wang Y L, Wang G Y, et al. LSTD: a low-shot transfer detector for object detection[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, 2018: 346.

    [27] Hu H Z, Bai S, Li A X, et al. Dense relation distillation with context-aware aggregation for few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10180–10189. https://doi.org/10.1109/CVPR46437.2021.01005.

    [28] Karlinsky L, Shtok J, Harary S, et al. RepMet: representative-based metric learning for classification and few-shot object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5197–5206. https://doi.org/10.1109/CVPR.2019.00534.

    [30] Sung F, Yang Y X, Zhang L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1199–1208. https://doi.org/10.1109/CVPR.2018.00131.

    [31] Tao X Y, Hong X P, Chang X Y, et al. Few-shot class-incremental learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12180–12189. .

    [32] Wang Y, Wu X M, Li Q M, et al. Large margin few-shot learning[Z]. arXiv: 1807.02872, 2018. https://doi.org/10.48550/arXiv.1807.02872.

    [33] Agarwal A, Majee A, Subramanian A, et al. Attention guided cosine margin to overcome class-imbalance in few-shot road object detection[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), 2022: 221–230. https://doi.org/10.1109/WACVW54805.2022.00028.

    [34] Nichol A, Achiam J, Schulman J. On first-order meta-learning algorithms[Z]. arXiv: 1803.02999, 2018. https://arxiv.org/abs/1803.02999.

    [35] Li Z G, Zhou F W, Chen F, et al. Meta-SGD: learning to learn quickly for few-shot learning[Z]. arXiv: 1707.09835, 2017. https://arxiv.org/abs/1707.09835.

    [36] Ravi S, Larochelle H. Optimization as a model for few-shot learning[C]//5th International Conference on Learning Representations, 2016.

    [37] Kang B Y, Liu Z, Wang X, et al. Few-shot object detection via feature reweighting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 8419–8428. https://doi.org/10.1109/ICCV.2019.00851.

    [38] Zhang G J, Luo Z P, Cui K W, et al. Meta-DETR: image-level few-shot detection with inter-class correlation exploitation[J]. IEEE Trans Pattern Anal Mach Intell, 2022. https://doi.org/10.1109/TPAMI.2022.3195735.

    [40] Wang Y X, Ramanan D, Hebert M. Meta-learning to detect rare objects[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 9924–9933. https://doi.org/10.1109/ICCV.2019.01002.

    [41] Li A X, Li Z G. Transformation invariant few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3093–3101. https://doi.org/10.1109/CVPR46437.2021.00311.

    [42] Xiao Y, Marlet R. Few-shot object detection and viewpoint estimation for objects in the wild[C]//16th European Conference on Computer Vision, 2020: 192210. https://doi.org/10.1007/978-3-030-58520-4_12.

    [43] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936944. https://doi.org/10.1109/CVPR.2017.106.

    [44] Wang X, Huang T, Gonzalez J, et al. Frustratingly simple few-shot object detection[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 9919–9928.

    [45] Fan Z B, Ma Y C, Li Z M, et al. Generalized few-shot object detection without forgetting[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 45254534. https://doi.org/10.1109/CVPR46437.2021.00450.

    [46] Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]//14th European Conference on Computer Vision, 2016: 850–865. https://doi.org/10.1007/978-3-319-48881-3_56.

    [47] Li B, Yan J J, Wu W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 89718980. https://doi.org/10.1109/CVPR.2018.00935.

    [48] Zhu Z, Wang Q, Li B, et al. Distractor-aware Siamese networks for visual object tracking[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 103–119. https://doi.org/10.1007/978-3-030-01240-3_7.

    [51] Wu J X, Liu S T, Huang D, et al. Multi-scale positive sample refinement for few-shot object detection[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 456–472. https://doi.org/10.1007/978-3-030-58517-4_27.

    Hao Peng, Wanqi Wang, Long Chen, Xianrong Peng, Jianlin Zhang, Zhiyong Xu, Yuxing Wei, Meihui Li. Few-shot object detection via online inferential calibration[J]. Opto-Electronic Engineering, 2023, 50(1): 220180
    Download Citation