• Photonics Research
  • Vol. 10, Issue 2, 535 (2022)
Weiqiang Xie1、2、†, Chao Xiang1、†, Lin Chang1, Warren Jin1, Jonathan Peters1, and John E. Bowers1、*
Author Affiliations
  • 1Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
  • 2Current address: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.446898 Cite this Article Set citation alerts
    Weiqiang Xie, Chao Xiang, Lin Chang, Warren Jin, Jonathan Peters, John E. Bowers. Silicon-integrated nonlinear III-V photonics[J]. Photonics Research, 2022, 10(2): 535 Copy Citation Text show less
    References

    [1] M. Lipson. Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol., 23, 4222-4238(2005).

    [2] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [3] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, D. Van Thourhout. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol., 23, 401-412(2005).

    [4] A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, T.-Y. Liow. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron., 20, 405-416(2013).

    [5] R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, J. E. Bowers. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag., 13, 17-26(2019).

    [6] Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita. Silicon photonics for next generation system integration platform. IEEE Commun. Mag., 51, 72-77(2013).

    [7] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 3, 283-311(2014).

    [8] C. R. Doerr. Silicon photonic integration in telecommunications. Front. Phys., 3, 37(2015).

    [9] W. Bogaerts, D. Pérez, J. Capmany, D. A. Miller, J. Poon, D. Englund, F. Morichetti, A. Melloni. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [10] N. Margalit, C. Xiang, S. M. Bowers, A. Bjorlin, R. Blum, J. E. Bowers. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [11] M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta. Nonlinear optics in photonic nanowires. Opt. Express, 16, 1300-1320(2008).

    [12] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [13] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [14] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [15] H. Hu, F. Da Ros, M. Pu. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photonics, 12, 469-473(2018).

    [16] D. T. Spencer, T. Drake, T. C. Briles. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [17] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [18] M. A. Guidry, D. M. Lukin, K. Y. Yang, R. Trivedi, J. Vučković. Quantum optics of soliton microcombs. Nat. Photonics, 16, 52-58(2022).

    [19] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [20] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [21] W. Xie, L. Chang, H. Shu, J. C. Norman, J. D. Peters, X. Wang, J. E. Bowers. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express, 28, 32894-32906(2020).

    [22] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, T. J. Kippenberg. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [23] M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, D. J. Blumenthal. 422  million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [24] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).

    [25] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [26] A. S. Raja, A. S. Voloshin, H. Guo, S. E. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, T. J. Kippenberg. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [27] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. J. Kippenberg, K. Vahala, J. E. Bowers. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [28] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [29] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kippenberg, J. E. Bowers. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [30] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [31] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [32] C. Xiang, W. Jin, J. Guo, C. Williams, A. M. Netherton, L. Chang, P. A. Morton, J. E. Bowers. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers. Opt. Express, 28, 19926-19936(2020).

    [33] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [34] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [35] C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, H. X. Tang. Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express, 19, 10462-10470(2011).

    [36] C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, H. X. Tang. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys., 14, 095014(2012).

    [37] U. D. Dave, B. Kuyken, F. Leo, S.-P. Gorza, S. Combrie, A. De Rossi, F. Raineri, G. Roelkens. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range. Opt. Express, 23, 4650-4657(2015).

    [38] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [39] D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, J. Vučković. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics, 14, 330-334(2020).

    [40] D. J. Wilson, K. Schneider, S. Hönl, M. Anderson, Y. Baumgartner, L. Czornomaz, T. J. Kippenberg, P. Seidler. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57-62(2020).

    [41] H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, S. B. Papp. Tantala Kerr nonlinear integrated photonics. Optica, 8, 811-817(2021).

    [42] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [43] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S.-P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Communications, 11, 1331(2020).

    [44] M. A. Afromowitz. Refractive index of Ga1-xAlxAs. Solid State Commun., 15, 59-63(1974).

    [45] G. Stegeman, A. Villeneuve, J. Kang, J. Aitchison, C. Ironside, K. Al-Hemyari, C. Yang, C.-H. Lin, H.-H. Lin, G. Kennedy, R. S. Grant, W. Sibbett. AlGaAs below half bandgap: the silicon of nonlinear optical materials. Int. J. Nonlinear Opt. Phys., 3, 347-371(1994).

    [46] J. S. Aitchison, D. Hutchings, J. Kang, G. Stegeman, A. Villeneuve. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron., 33, 341-348(1997).

    [47] S. Ho, C. Soccolich, M. Islam, W. Hobson, A. Levi, R. Slusher. Large nonlinear phase shifts in low-loss AlxGa1-x as waveguides near half-gap. Appl. Phys. Lett., 59, 2558-2560(1991).

    [48] K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion. Opt. Express, 19, 12440-12455(2011).

    [49] J. J. Wathen, P. Apiratikul, C. J. Richardson, G. A. Porkolab, G. M. Carter, T. E. Murphy. Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides. Opt. Lett., 39, 3161-3164(2014).

    [50] J. McPhillimy, S. May, C. Klitis, B. Guilhabert, M. D. Dawson, M. Sorel, M. J. Strain. Transfer printing of AlGaAs-on-SOI microdisk resonators for selective mode coupling and low-power nonlinear processes. Opt. Lett., 45, 881-884(2020).

    [51] H. El Dirani, C. Monat, S. Brision, N. Olivier, C. Jany, X. Letartre, M. Pu, P. D. Girouard, L. H. Frandsen, E. Semenova, L. K. Oxenløwe, K. Yvind, C. Sciancalepore. SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics. Proc. SPIE, 10535, 1053508(2018).

    [52] J. Chiles, N. Nader, E. J. Stanton, D. Herman, G. Moody, J. Zhu, J. C. Skehan, B. Guha, A. Kowligy, J. T. Gopinath, K. Srinivasan, S. A. Diddams, I. Coddington, N. R. Newbury, J. M. Shainline, S. W. Nam, R. P. Mirin. Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica, 6, 1246-1254(2019).

    [53] E. J. Stanton, L. Chang, W. Xie, A. Malik, J. Peters, J. Chiles, N. Nader, G. Navickaite, D. Sacchetto, M. Zervas, K. Srinivasan, J. E. Bowers, S. B. Papp, S. W. Nam, R. P. Mirin. On-chip polarization rotator for type I second harmonic generation. APL Photon., 4, 126105(2019).

    [54] E. J. Stanton, J. Chiles, N. Nader, G. Moody, N. Volet, L. Chang, J. E. Bowers, S. W. Nam, R. P. Mirin. Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides. Opt. Express, 28, 9521-9532(2020).

    [55] B. Kuyken, M. Billet, F. Leo, K. Yvind, M. Pu. Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide. Opt. Lett., 45, 603-606(2020).

    [56] G. Moille, L. Chang, W. Xie, A. Rao, X. Lu, M. Davanco, J. E. Bowers, K. Srinivasan. Dissipative Kerr solitons in a III-V microresonator. Laser Photon. Rev., 14, 2000022(2020).

    [57] H. Shu, B. Shen, L. Chang, W. Xie, J. Qin, M. Jin, X. Zhang, X. Wang, J. E. Bowers. Mode-locked dark-pulse Kerr combs in normal-dispersion AlGaAs-on-insulator microresonators. Conference on Lasers and Electro-Optics, STu2G.4(2021).

    [58] T. J. Steiner, J. E. Castro, L. Chang, Q. Dang, W. Xie, J. Norman, J. E. Bowers, G. Moody. Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum, 2, 010337(2021).

    [59] S. Zhang, J. M. Silver, L. Del Bino, F. Copie, M. T. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, P. Del’Haye. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

    [60] A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, L. Maleki. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A, 71, 033804(2005).

    CLP Journals

    [1] Runlin Miao, Chenxi Zhang, Xin Zheng, Xiang’ai Cheng, Ke Yin, Tian Jiang. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation[J]. Photonics Research, 2022, 10(8): 1859

    Weiqiang Xie, Chao Xiang, Lin Chang, Warren Jin, Jonathan Peters, John E. Bowers. Silicon-integrated nonlinear III-V photonics[J]. Photonics Research, 2022, 10(2): 535
    Download Citation