• Chinese Optics Letters
  • Vol. 19, Issue 5, 050602 (2021)
Kanglin Li, Jiangbing Du*, Weihong Shen, Jiacheng Liu, and Zuyuan He**
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/COL202119.050602 Cite this Article Set citation alerts
    Kanglin Li, Jiangbing Du, Weihong Shen, Jiacheng Liu, Zuyuan He. Improved optical coupling based on a concave cavity lens fabricated by optical fiber facet etching[J]. Chinese Optics Letters, 2021, 19(5): 050602 Copy Citation Text show less
    References

    [1] S. Jiang, L. Ma, S. Wang, X. Fan, Z. He. Mode-interference-induced oscillation in propagation speed of fiber fuse in few-mode fibers. Opt. Lett., 43, 4252(2018).

    [2] W. Shen, J. Du, L. Sun, C. Wang, Y. Zhu, K. Xu, B. Chen, Z. He. Low-latency and high-speed hollow-core fiber optical interconnection at 2-micron waveband. J. Lightwave Technol., 38, 3874(2020).

    [3] R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel. Capacity limits of optical fiber networks. J. Lightwave Technol., 28, 662(2010).

    [4] L. Ma, S. Jiang, J. Du, C. Yang, W. Tong, Z. He. Ring-assisted 7-lp-mode fiber with ultralow inter mode crosstalk. Asia Communications and Photonics Conference 2016, AS4A.5(2016).

    [5] Y. Liu, L. Ma, W. Xiao, R. Wang, J. Xiong, J. Luo, Z. He. Wide band multimode fiber with an optimized core size and fluorine-doped cladding for high-speed SWDM and CWDM transmission. Opt. Express, 27, 15433(2019).

    [6] S. Jiang, L. Ma, Z. Zhang, X. Xu, S. Wang, J. Du, C. Yang, W. Tong, Z. He. Design and characterization of ring-assisted few-mode fibers for weakly coupled mode-division multiplexing transmission. J. Lightwave Technol., 36, 5547(2018).

    [7] J. Li, J. Du, L. Ma, M.-J. Li, Z. He. Second-order few mode distributed Raman amplifier for mode-division multiplexing transmission. Optical Fiber Communication Conference, Th4A.3(2017).

    [8] G. Son, S. Han, J. Park, K. Kwon, K. Yu. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits. Nanophotonics, 10, 1515(2018).

    [9] J. Li, C. Cai, J. Du, S. Jiang, L. Ma, L. Wang, L. Zhu, A. Wang, M. Li, H. Chen, J. Wang, Z. He. Ultra-low-noise mode-division multiplexed WDM transmission over 100-km FMF based on a second-order few-mode Raman amplifier. J. Lightwave Technol., 36, 3254(2018).

    [10] L. Jia, C. Li, T.-Y. Liow, G.-Q. Lo. Efficient suspended coupler with loss less than −1.4 dB between Si-photonic waveguide and cleaved single mode fiber. J. Lightwave Technol., 36, 239(2018).

    [11] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni. Coupling strategies for silicon photonics integrated chips. Photon. Res., 7, 201(2019).

    [12] D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. V. Thourhout, G. Roelkens. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express, 18, 18278(2010).

    [13] T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita. Low loss mode size converter from 0.3 µm square Si wire waveguides to single mode fibres. Electron. Lett., 38, 1669(2002).

    [14] F. Van Laere, G. Roelkens, M. Ayre. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Lightwave Technol., 25, 151(2007).

    [15] H. Park, S. Kim, J. Park, J. Joo, G. Kim. A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si photonic chips. Opt. Express, 21, 29313(2013).

    [16] A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, L. C. Andreani. Optimising apodized grating couplers in a pure SOI platform to −0.5 dB coupling efficiency. Opt. Express, 23, 16289(2015).

    [17] T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletić, M. D. Lukin. Efficient fiber-optical interface for nanophotonic devices. Optica, 2, 70(2015).

    [18] A. Khilo, M. A. Popović, M. Araghchini, F. X. Kärtner. Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution. Opt. Express, 18, 15790(2010).

    [19] P. Li, J. Liu, P. Huang, X. Zhang, J. Shi, L. Yuan, C. Guan. Tunable fiber-tip lens based on thermo-optic effect of amorphous silicon. Chin. Opt. Lett., 18, 030602(2020).

    [20] X. Zhang, T. Yuan, X. Yang, C. Guan, J. Yang, Z. Liu, H. Deng, L. Yuan. In-fiber integrated optics: an emerging photonics integration technology [Invited]. Chin. Opt. Lett., 16, 110601(2018).

    [21] J. I. Yamada, Y. Murakami, J. I. Sakai. Characteristic of a hemispherical microlens for coupling between a semiconductor laser and single mode fiber. IEEE J. Quantum Electron, 16, 1067(1980).

    [22] F. P. Payne, C. D. Hussey, M. S. Hataki. Modelling fused single-mode fibre couplers. Electron. Lett., 21, 461(1985).

    [23] S.-M. Tseng, C.-L. Chen. Side-polished fibers. Appl. Opt., 31, 3438(1992).

    [24] V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, J. Tang. Optically controllable side-polished fiber attenuator with photo responsive liquid crystal over lay. Opt. Express, 17, 19988(2009).

    [25] H. Melkonyan, K. Sloyan, M. Odeh, I. Almansouri. Embedded parabolic fiber lens for efficient fiber-to-waveguide coupling fabricated by focused ion beam. J. Phys. Photon., 1, 025004(2019).

    [26] H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, M. Dahlem. Efficient fiber-to-waveguide edge coupling using an optical fiber axicon lens fabricated by focused ion beam. IEEE Photon. J., 9, 7104309(2017).

    [27] H. Melkonyan, K. Sloyan, M. Odeh, I. Almansouri. Gradient-index optical fiber lens for efficient fiber-to-chip coupling. Opt. Express, 25, 13035(2017).

    [28] P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, O. Frazão. Fabry–Pérot cavities based on chemical etching for high temperature and strain sensing. Opt. Commun., 285, 1159(2012).

    [29] C. J. Tuck, R. Hague, C. Doyle. Low cost optical fibre based Fabry–Perot strain sensor production. Meas. Sci. Technol., 17, 2206(2006).

    [30] Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, Y. Wu. Temperature insensitive micro Fabry–Pérot strain sensor fabricated by chemically etching Er-doped fiber. IEEE Photon. Technol. Lett., 21, 1725(2009).

    CLP Journals

    [1] Ce Bian, Minxuan Li, Wei Cao, Manli Hu, Zhiqin Chu, Ruohui Wang. Robust integration of nitrogen-vacancy centers in nanodiamonds to optical fiber and its application in all-optical thermometry[J]. Chinese Optics Letters, 2021, 19(12): 120601

    Data from CrossRef

    [1] Federica Piccirillo, Martino Giaquinto, Armando Ricciardi, Andrea Cusano. Miniaturized lenses integrated on optical fibers: towards a new milestone along the lab-on-fiber technology roadmap. Results in Optics, 100203(2021).

    Kanglin Li, Jiangbing Du, Weihong Shen, Jiacheng Liu, Zuyuan He. Improved optical coupling based on a concave cavity lens fabricated by optical fiber facet etching[J]. Chinese Optics Letters, 2021, 19(5): 050602
    Download Citation