• Journal of Inorganic Materials
  • Vol. 35, Issue 10, 1088 (2020)
Dandan YANG, Xiaoming LI*, Cuifang MENG, Jiaxin CHEN, and Haibo ZENG
Author Affiliations
  • MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.15541/jim20190572 Cite this Article
    Dandan YANG, Xiaoming LI, Cuifang MENG, Jiaxin CHEN, Haibo ZENG. Research Progress on the Stability of CsPbX3 Nanocrystals[J]. Journal of Inorganic Materials, 2020, 35(10): 1088 Copy Citation Text show less
    References

    [1] A KOJIMA, K TESHIMA, Y SHIRAI et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [2] C SCHMIDT L, A PERTEGAS, S GONZALEZ-CARRERO et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. Journal of the American Chemical Society, 136, 850-853(2014).

    [3] L PROTESESCU, S YAKUNIN, I BODNARCHUK M et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 15, 3692-3696(2015).

    [4] L DOU, M LAI, S KLEY C et al. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proceedings of the National Academy of Sciences of the United States of America, 114, 7216-7221(2017).

    [5] G ALMEIDA, I INFANTE, L MANNA. Resurfacing halide perovskite nanocrystals. Science, 364, 833-834(2019).

    [6] X LI, Y WU, S ZHANG et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 26, 2435-2445(2016).

    [7] J DE ROO, M IBANEZ, P GEIREGAT et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 10, 2071-2081(2016).

    [8] K RAVI V, K SANTRA P, N JOSHI et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. The Journal of Physical Chemistry Letters, 8, 4988-4994(2017).

    [9] M IMRAN, P IJAZ, L GOLDONI et al. Simultaneous cationic and anionic ligand exchange for colloidally stable CsPbBr3 nanocrystals. ACS Energy Letters, 4, 819-824(2019).

    [10] P NENON D, K PRESSLER, J KANG et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases. Journal of the American Chemical Society, 140, 17760-17772(2018).

    [11] Q ZHONG, M CAO, Y XU et al. L-type ligand-assisted acid-free synthesis of CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield and high stability. Nano Letters, 19, 4151-4157(2019).

    [12] Y WEI, Z CHENG, J LIN. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 48, 310-350(2019).

    [13] Y ZHAO, K ZHU. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 45, 655-689(2016).

    [14] Y ZHOU, Y ZHAO. Chemical stability and instability of inorganic halide perovskites. Energy & Environmental Science, 12, 1495-1511(2019).

    [15] A DUTTA, N PRADHAN. Phase-stable red-emitting CsPbI3 nanocrystals: successes and challenges. ACS Energy Letters, 4, 709-719(2019).

    [16] F LI, Y LIU, H WANG et al. Postsynthetic surface trap removal of CsPbX3(X=Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chemistry of Materials, 30, 8546-8554(2018).

    [17] K SUN J, S HUANG, Z LIU X et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires. Journal of the American Chemical Society, 140, 11705-11715(2018).

    [18] Y HOU, R ZHOU Z, Y WEN T et al. Enhanced moisture stability of metal halide perovskite solar cells based on sulfur-oleylamine surface modification. Nanoscale Horizons, 4, 208-213(2019).

    [19] W ZHOU, F SUI, G ZHONG et al. Lattice dynamics and thermal stability of cubic-phase CsPbI3 quantum dots. The Journal of Physical Chemistry Letters, 9, 4915-4920(2018).

    [20] L RUAN, W SHEN, A WANG et al. Stable and conductive lead halide perovskites facilitated by X-type ligands. Nanoscale, 9, 7252-7259(2017).

    [21] D YANG, X LI, H ZENG. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Advanced Materials Interfaces, 5, 1701662(2018).

    [22] J KANG, W WANG L. High defect tolerance in lead halide perovskite CsPbBr3. The Journal of Physical Chemistry Letters, 8, 489-493(2017).

    [23] C RAN, J XU, W GAO et al. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chemical Society Reviews, 47, 4581-4610(2018).

    [24] X LI, F CAO, D YU et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 13, 1603996(2017).

    [25] D YANG, X LI, Y WU et al. Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Advanced Optical Materials, 7, 1900276(2019).

    [26] H WU, Y ZHANG, M LU et al. Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance. Nanoscale, 10, 4173-4178(2018).

    [27] T AHMED, S SETH, A SAMANTA. Boosting the photoluminescence of CsPbX3 (X=Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts. Chemistry of Materials, 30, 3633-3637(2018).

    [28] A KOSCHER B, K SWABECK J, D BRONSTEIN N et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. Journal of the American Chemical Society, 139, 6566-6569(2017).

    [29] X DING, H CHEN, Y WU et al. Triple cation additive NH 3+C 2H 4NH 2+C2H4NH 3+-induced phase-stable inorganic α-CsPbI3 perovskite films for use in solar cells. Journal of Materials Chemistry A, 6, 18258-18266(2018).

    [30] J PAN, N QUAN L, Y ZHAO et al. Highly efficient perovskite quantum dot light-emitting diodes by surface engineering. Advanced Materials, 28, 8718-8725(2016).

    [31] J ZHU, Y ZHU, J HUANG et al. Synthesis of CsPbBr3 perovskite nanocrystals with the sole ligand of protonated (3-aminopropyl) triethoxysilane. Journal of Materials Chemistry C, 7, 7201-7206(2019).

    [32] S WANG, X SHEN, Y ZHANG et al. Oxalic acid enabled emission enhancement and continuous extraction of chloride from cesium lead chloride/bromide perovskite nanocrystals. Small, 15, 1901828(2019).

    [33] E YASSITEPE, Z YANG, O VOZNYY et al. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light- emitting diodes. Advanced Functional Materials, 26, 8757-8763(2016).

    [34] J PAN, Y SHANG, J YIN et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. Journal of the American Chemical Society, 140, 562-565(2018).

    [35] Y TAN, Y ZOU, L WU et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Applied Materials & Interfaces, 10, 3784-3792(2018).

    [36] F KRIEG, T OCHSENBEIN S, S YAKUNIN et al. Colloidal CsPbX3(X=Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Letters, 3, 641-646(2018).

    [37] D YANG, X LI, W ZHOU et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification. Advanced Materials, 31, 1900767(2019).

    [38] C WANG, S CHESMAN A, J JASIENIAK J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chemical Communications, 53, 232-235(2016).

    [39] G ALMEIDA, J ASHTON O, L GOLDONI et al. The phosphine oxide route toward lead halide perovskite nanocrystals. Journal of the American Chemical Society, 140, 14878-14886(2018).

    [40] T XUAN, X YANG, S LOU et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale, 9, 15286-15290(2017).

    [41] D YAN, T SHI, Z ZANG et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small, 15, 1901173(2019).

    [42] Z WU L, X ZHONG Q, D YANG et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir, 33, 12689-12696(2017).

    [43] S HOU, Y GUO, Y TANG et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles. ACS Applied Materials & Interfaces, 9, 18417-18422(2017).

    [44] J HAI, H LI, Y ZHAO et al. Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chemical Communications, 53, 5400-5403(2017).

    [45] M MEYNS, M PERALVAREZ, A HEUER-JUNGEMAN et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Applied Materials & Interfaces, 8, 19579-19586(2016).

    [46] N RAJA S, Y BEKENSTEIN, A KOC M et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Applied Materials & Interfaces, 8, 35523-35533(2016).

    [47] A LOIUDICE, S SARIS, E OVEISI et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angewandte Chemie-International Edition, 56, 10696-10701(2017).

    [48] J LI Z, E HOFMAN, J LI et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Advanced Functional Materials, 28, 1704288(2018).

    [49] Z HU, Z LIU, Y BIAN et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability. Advanced Optical Materials, 6, 1700997(2018).

    [50] Z LI, L KONG, S HUANG et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/ alumina monolith. Angewandte Chemie International Edition, 56, 8134-8138(2017).

    [51] L LI, Z ZHANG, Y CHEN et al. Sustainable and self-enhanced electrochemiluminescent ternary suprastructures derived from CsPbBr3 perovskite quantum dots. Advanced Functional Materials, 29, 1902533(2019).

    [52] H WU, S LIN, R WANG et al. Water-stable and ion exchange-free inorganic perovskite quantum dots encapsulated in solid paraffin and their application in light emitting diodes. Nanoscale, 11, 5557-5563(2019).

    [53] B WANG, C ZHANG, S HUANG et al. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Applied Materials & Interfaces, 10, 23303-23310(2018).

    [54] Y WEI, H XIAO, Z XIE et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Advanced Optical Materials, 6, 1701343(2018).

    [55] A VELDHUIS S, F NG Y, R AHMAD et al. Crown ethers enable room-temperature synthesis of CsPbBr3 quantum dots for light- emitting diodes. ACS Energy Letters, 3, 526-531(2018).

    [56] Y CHEN, M YU, S YE et al. All-inorganic CsPbBr3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanolasers. Nanoscale, 10, 6704-6711(2018).

    [57] J HAO, X QU, L QIU et al. One-step loading on natural mineral halloysite nanotube: an effective way to enhance the stability of perovskite CsPbX3(X=Cl, Br, I) quantum dots. Advanced Optical Materials, 7, 1801323(2019).

    [58] L WU, H HU, Y XU et al. From nonluminescent Cs4PbX6(X=Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Letters, 17, 5799-5804(2017).

    [59] H HU, L WU, Y TAN et al. Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles. Journal of the American Chemical Society, 140, 406-412(2018).

    [60] Q ZHONG, M CAO, H HU et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano, 12, 8579-8587(2018).

    [61] X ZHANG, M LU, Y ZHANG et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p-i-n structures. ACS Central Science, 4, 1352-1359(2018).

    [62] D ZHANG, W ZHOU, Q LIU et al. CH3NH3PbBr3 perovskite nanocrystals encapsulated in lanthanide metal-organic frameworks as a photoluminescence converter for anti-counterfeiting. ACS Applied Materials & Interfaces, 10, 27875-27884(2018).

    [63] C ZHANG, B WANG, W LI et al. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 8, 1138(2017).

    [64] D ZHANG, Y XU, Q LIU et al. Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection. Inorganic Chemistry, 57, 4613-4619(2018).

    [65] Q ZHANG, Y YIN. All-inorganic metal halide perovskite nanocrystals: opportunities and challenges. ACS Central Science, 4, 668-679(2018).

    [66] W CHEN, J HAO, W HU et al. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small, 13, 1604085(2017).

    [67] X TANG, J YANG, S LI et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties. Advanced Science, 6, 1900412(2019).

    Dandan YANG, Xiaoming LI, Cuifang MENG, Jiaxin CHEN, Haibo ZENG. Research Progress on the Stability of CsPbX3 Nanocrystals[J]. Journal of Inorganic Materials, 2020, 35(10): 1088
    Download Citation