• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1900001 (2022)
Hao Li1、2, Wei Huang1、2, Yulong Cui1、2, Wenxi Pei1、3, and Zefeng Wang1、2、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, Hunan, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/LOP202259.1900001 Cite this Article Set citation alerts
    Hao Li, Wei Huang, Yulong Cui, Wenxi Pei, Zefeng Wang. Progress and Prospect of Fiber Lasers Operating at 1.7 μm Band[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900001 Copy Citation Text show less
    References

    [1] Zhang Y, Zhang P, Liu P et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 53, 090002(2016).

    [2] Alexander V V, Ke K, Xu Z et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery and Medicine, 43, 470-480(2011).

    [3] Mingareev I, Weirauch F, Olowinsky A et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [4] Li B, Zheng C T, Liu H F et al. Development and measurement of a near-infrared CH4 detection system using 1.654 μm wavelength-modulated diode laser and open reflective gas sensing probe[J]. Sensors and Actuators B: Chemical, 225, 188-198(2016).

    [5] Horton N G, Xu C. Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm[J]. Biomedical Optics Express, 6, 1392-1397(2015).

    [6] Cheng H, Tong S, Deng X Q et al. Deep-brain 2-photon fluorescence microscopy in vivo excited at the 1700 nm window[J]. Optics Letters, 44, 4432-4435(2019).

    [7] Ishida S, Nishizawa N, Ohta T et al. Ultrahigh-resolution optical coherence tomography in 1.7 µm region with fiber laser supercontinuum in low-water-absorption samples[J]. Applied Physics Express, 4, 052501(2011).

    [8] Kawagoe H, Ishida S, Aramaki M et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 5, 932-943(2014).

    [9] Li C, Shi J W, Gong X J et al. 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging[J]. Optics Letters, 43, 5849-5852(2018).

    [10] Li C, Shi J W, Wang X T et al. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids[J]. Photonics Research, 8, 160-164(2020).

    [11] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [12] Yin Y C, Li J, Ren X M et al. High-efficiency optical parametric chirped-pulse amplifier in BiB₃O₆ for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7 μm[J]. Optics Letters, 41, 1142-1145(2016).

    [13] Zhu H Y, Guo J H, Duan Y M et al. Efficient 1.7 μm light source based on KTA-OPO derived by Nd∶YVO4 self-Raman laser[J]. Optics Letters, 43, 345-348(2018).

    [14] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 29, 1503-1505(2004).

    [15] Shen D Y, Sahu J K, Clarkson W A. High-power widely tunable Tm: fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm[J]. Optics Express, 14, 6084-6090(2006).

    [16] Shen D Y, Pearson L, Wang P et al. Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power[J]. Optics Express, 16, 11021-11026(2008).

    [17] Tokurakawa M, Daniel J M O, Chenug C S et al. Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages[J]. Optics Express, 23, 471-476(2015).

    [18] Daniel J M O, Simakov N, Tokurakawa M et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 23, 18269-18276(2015).

    [19] Burns M D, Shardlow P C, Barua P et al. 47 W continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser[J]. Optics Letters, 44, 5230-5233(2019).

    [20] Quan Z, Gao C, Guo H et al. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750 nm with volume Bragg grating[J]. Scientific Reports, 5, 12034(2015).

    [21] Xiao X S, Guo H T, Lu M et al. Watts-level super-compact narrow-linewidth Tm-doped silica all-fiber laser near 1707 nm with fiber Bragg gratings[J]. Laser Physics, 26, 115103(2016).

    [22] Xiao X S, Guo H T, Yan Z J et al. 3 W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping[J]. Applied Physics B, 123, 135(2017).

    [23] He Z X, Zhang P, Wu D et al. 1.7 μm Tm-doped continue-wave and pulse fibre laser using a modulated pump based on variable pulse generated mechanisms[J]. Optics & Laser Technology, 131, 106450(2020).

    [24] Zhang J X, Sheng Q, Sun S et al. 1.7-μm thulium fiber laser with all-fiber ring cavity[J]. Optics Communications, 457, 124627(2020).

    [25] Zhang L, Zhang J X, Sheng Q et al. Efficient multi-watt 1720 nm ring-cavity Tm-doped fiber laser[J]. Optics Express, 28, 37910-37918(2020).

    [26] Zhang J X, Sheng Q, Zhang L et al. Single-frequency 1.7-μm Tm-doped fiber laser with optical bistability of both power and longitudinal mode behavior[J]. Optics Express, 29, 21409-21417(2021).

    [27] Zhang L, Zhang J X, Sheng Q et al. Watt-level 1.7-μm single-frequency thulium-doped fiber oscillator[J]. Optics Express, 29, 27048-27056(2021).

    [28] Zhang L, Zhang J X, Sheng Q et al. 1.7-μm Tm-doped fiber laser intracavity-pumped by an erbium/ytterbium-codoped fiber laser[J]. Optics Express, 29, 25280-25289(2021).

    [29] Cen X, Guan X C, Yang C S et al. Short-wavelength, in-band-pumped single- frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm[J]. IEEE Photonics Technology Letters, 33, 350-353(2021).

    [30] Li C, Wei X M, Kong C H et al. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser[J]. APL Photonics, 2, 121302(2017).

    [31] Li C, Kong C H, Wong K K Y. High energy noise-like pulse generation from a mode-locked thulium-doped fiber laser at 1.7 μm[J]. IEEE Photonics Journal, 11, 19178252(2019).

    [32] Chen J X, Li X Y, Li T J et al. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 9, 873-878(2021).

    [33] Chen S X, Chen Y H, Liu K et al. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber[J]. Optics Express, 28, 17570-17580(2020).

    [34] Yamada M, Senda K, Tanaka T et al. Tm3+-Tb3+-doped tunable fibre ring laser for 1700 nm wavelength region[J]. Electronics Letters, 49, 1287-1288(2013).

    [35] Xue G H, Zhang B, Yin K et al. Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm[J]. Optics Express, 22, 25976-25983(2014).

    [36] Firstov S, Alyshev S, Melkumov M et al. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm[J]. Optics Letters, 39, 6927-6930(2014).

    [37] Firstov S V, Alyshev S V, Riumkin K E et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 40, 4360-4363(2015).

    [38] Noronen T, Firstov S, Dianov E et al. 1700 nm dispersion managed mode-locked bismuth fiber laser[J]. Scientific Reports, 6, 24876(2016).

    [39] Noronen T, Okhotnikov O, Gumenyuk R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band[J]. Optics Express, 24, 14703-14708(2016).

    [40] Khegai A, Melkumov M, Riumkin K et al. NALM-based bismuth-doped fiber laser at 1.7 μm[J]. Optics Letters, 43, 1127-1130(2018).

    [41] Du T J, Ruan Q J, Yang R H et al. 1.7-μm Tm/Ho-codoped all-fiber pulsed laser based on intermode-beating modulation technique[J]. Journal of Lightwave Technology, 36, 4894-4899(2018).

    [42] Svane A S, Rottwitt K K. PM Raman fiber laser at 1679 nm[C], JTu5A.28(2012).

    [43] Svane A S, Liu X M, Rottwitt K. Highly stable PM Raman fiber laser at 1680 nm[C], CW1M.6(2013).

    [44] Liu J, Shen D Y, Huang H T et al. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings[J]. Optics Express, 22, 6605-6612(2014).

    [45] Zhang P, Wu D, Du Q L et al. 1.7 μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission[J]. Applied Optics, 56, 9742-9748(2017).

    [46] Zhang L, Dong J Y, Feng Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 17246523(2018).

    [47] Dong J Y, Zhang L, Jiang H W et al. High order cascaded Raman random fiber laser with high spectral purity[J]. Optics Express, 26, 5275-5280(2018).

    [48] Thouroude R, Gilles H, Cadier B et al. Linearly-polarized high-power Raman fiber lasers near 1670 nm[J]. Laser Physics Letters, 16, 025102(2019).

    [49] Zhang Y, Song J X, Ye J et al. Tunable random Raman fiber laser at 1.7 µm region with high spectral purity[J]. Optics Express, 27, 28800-28807(2019).

    [50] Zhang Y, Xu J M, Ye J et al. Cascaded telecom fiber enabled high-order random fiber laser beyond zero-dispersion wavelength[J]. Optics Letters, 45, 4180-4183(2020).

    [51] Grimes A, Hariharan A, Sun Y Z et al. Hundred-watt CW and Joule level pulsed output from Raman fiber laser in 1.7-μm band[J]. Proceedings of SPIE, 11260, 112601S(2020).

    [52] Kuang Q Q, Zhan L, Gu Z C et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser[J]. Journal of Lightwave Technology, 33, 391-395(2015).

    [53] Yao W C, Chen B H, Zhang J N et al. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm[J]. Optics Express, 23, 11007-11012(2015).

    [54] Yin T C, Qi Z N, Chen F H et al. High peak-power and narrow-linewidth all-fiber Raman nanosecond laser in 1.65 µm waveband[J]. Optics Express, 28, 7175-7181(2020).

    [55] Wang K, Xu C. Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source[J]. Optics Letters, 36, 942-944(2011).

    [56] Wang K, Xu C. Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy[J]. Applied Physics Letters, 99, 071112(2011).

    [57] Nguyen T N, Kieu K, Churin D et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 25, 1893-1896(2013).

    [58] Fang X, Wang Z Q, Zhan L. Efficient generation of all-fiber femtosecond pulses at 1.7  μm via soliton self-frequency shift[J]. Optical Engineering, 56, 046107(2017).

    [59] Zach A, Mohseni M, Polzer C et al. All-fiber widely tunable ultrafast laser source for multimodal imaging in nonlinear microscopy[J]. Optics Letters, 44, 5218-5221(2019).

    [60] Becheker R, Tang M, Hanzard P H et al. High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 µm[J]. Laser Physics Letters, 15, 115103(2018).

    [61] Tang M C, Becheker R, Hanzard P H et al. Low noise high-energy dissipative soliton erbium fiber laser for fiber optical parametric oscillator pumping[J]. Applied Sciences, 8, 2161-2175(2018).

    [62] Qin Y K, Batjargal O, Cromey B et al. All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification[J]. Optics Express, 28, 2317-2325(2020).

    [63] Liao R Y, Song Y J, Zhou X K et al. Ultra-flat supercontinuum generated from high-power, picosecond telecommunication fiber laser source[J]. Applied Optics, 55, 9384-9388(2016).

    [64] Chung H Y, Liu W, Cao Q et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm[J]. Optics Express, 25, 15760-15771(2017).

    [65] Zeng J J, Akosman A E, Sander M Y. Supercontinuum generation from a thulium ultrafast fiber laser in a high NA silica fiber[J]. IEEE Photonics Technology Letters, 31, 1787-1790(2019).

    [66] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [67] Smith C M, Venkataraman N, Gallagher M T et al. Low-loss hollow-core silica/air photonic bandgap fibre[J]. Nature, 424, 657-659(2003).

    [68] Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber[J]. Optics Letters, 31, 3574-3576(2006).

    [69] Gérôme F, Jamier R, Auguste J L et al. Simplified hollow-core photonic crystal fiber[J]. Optics Letters, 35, 1157-1159(2010).

    [70] Debord B, Amsanpally A, Chafer M et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers[J]. Optica, 4, 209-217(2017).

    [71] Sakr H, Chen Y, Jasion G T et al. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm[J]. Nature Communications, 11, 6030(2020).

    [72] Ding J J, Wang Y Y, Zhang J et al. Wired transmission of PS-PAM8 signal at W-band over terahertz hollow-core fiber[J]. Acta Optica Sinica, 41, 2406003(2021).

    [73] Jiang S L, Jin W, Chen F F et al. Carbon dioxide detection with high sensitivity based on photo-thermal spectroscopy in hollow-core optical fiber[J]. Acta Optica Sinica, 41, 1306004(2021).

    [74] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).

    [75] Benabid F, Bouwmans G, Knight J C et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Physical Review Letters, 93, 123903(2004).

    [76] Benabid F, Couny F, Knight J C et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 434, 488-491(2005).

    [77] Couny F, Benabid F, Light P S. Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 99, 143903(2007).

    [78] Couny F, Benabid F, Roberts P J et al. Generation and photonic guidance of multi-octave optical-frequency combs[J]. Science, 318, 1118-1121(2007).

    [79] Russell P S J, Hölzer P, Chang W et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics[J]. Nature Photonics, 8, 278-286(2014).

    [80] Belli F, Abdolvand A, Chang W et al. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber[J]. Optica, 2, 292-300(2015).

    [81] Cao L, Gao S F, Peng Z G et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 26, 5609-5615(2018).

    [82] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [83] Wang Y Z, Dasa M K, Adamu A I et al. High pulse energy and quantum efficiency mid-infrared gas Raman fiber laser targeting CO2 absorption at 4.2 µm[J], 45, 1938-1941(2020).

    [84] Wang Z F, Yu F, Wadsworth W J et al. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 34, 0814004(2014).

    [85] Chen Y B, Gu B, Wang Z F et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 36, 0506002(2016).

    [86] Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H2-filled hollow-core fiber by stimulated Raman scattering[J]. Acta Optica Sinica, 36, 0806005(2016).

    [87] Chen Y B, Wang Z F, Gu B et al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 37, 0514002(2017).

    [88] Cui Y L, Huang W, Zhou Z Y et al. Single-pass high-efficiency rotational Raman laser source based on deuterium-filled hollow-core photonic crystal fiber[J]. Acta Optica Sinica, 40, 0214001(2020).

    [89] Wang Z F, Huang W, Li Z X et al. Progress and prospects of fiber gas laser sources (Ⅰ): based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 0401008(2021).

    [90] Huang W, Cui Y L, Li Z X et al. Research on 1.7 μm fiber laser source based on stimulated Raman scattering of hydrogen in hollow-core fiber[J]. Acta Optica Sinica, 40, 0514001(2020).

    [91] Huang W, Li Z X, Cui Y L et al. Efficient, watt-level, tunable 1.7 µm fiber Raman laser in H2-filled hollow-core fibers[J]. Optics Letters, 45, 475-478(2020).

    [92] Li H, Huang W, Cui Y L et al. Pure rotational stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers[J]. Optics Express, 28, 23881-23897(2020).

    [93] Li H, Pei W X, Huang W et al. Highly efficient nanosecond 1.7 μm fiber gas Raman laser by H2-filled hollow-core photonic crystal fibers[J]. Crystals, 11, 32-42(2020).

    [94] Li H, Huang W, Pei W X et al. Continuous-wave 1.7 μm all-fiber gas Raman laser source[J]. Acta Optica Sinica, 41, 0314001(2021).

    [95] Pei W X, Li H, Huang W et al. All-fiber tunable pulsed 1.7 μm fiber lasers based on stimulated Raman scattering of hydrogen molecules in hollow-core fibers[J]. Molecules, 26, 4561(2021).

    [96] Pei W X, Li H, Huang W et al. All-fiber gas Raman laser by D2-filled hollow-core photonic crystal fibers[J]. Photonics, 8, 382(2021).

    [97] Li H, Huang W, Pei W X et al. All-fiber gas Raman laser oscillator[J]. Optics Letters, 46, 5208-5211(2021).

    [98] Pei W X, Li H, Huang W et al. Pulsed fiber laser oscillator at 1.7 µm by stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers[J]. Optics Express, 29, 33915-33925(2021).

    [99] Cui Y L, Huang W, Li Z X et al. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering[J]. Optics Express, 27, 30396-30404(2019).

    [100] Li H, Huang W, Cui Y L et al. 3 W tunable 1.65 µm fiber gas Raman laser in D2-filled hollow-core photonic crystal fibers[J]. Optics & Laser Technology, 132, 106474(2020).

    Hao Li, Wei Huang, Yulong Cui, Wenxi Pei, Zefeng Wang. Progress and Prospect of Fiber Lasers Operating at 1.7 μm Band[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900001
    Download Citation